An Online Tool for Semi-Automatically Annotating Music Scores for Optical Music Recognition

被引:0
作者
Graczyk, Stanislaw [1 ]
Piniarska, Zuzanna [1 ]
Kalamoniak, Mateusz [1 ]
Lukaszewski, Tomasz [1 ]
Lukasik, Ewa [1 ]
机构
[1] Poznan Univ Tech, Poznan, Poland
来源
PROCEEDINGS OF 11TH INTERNATIONAL CONFERENCE ON DIGITAL LIBRARIES FOR MUSICOLOGY, DLFM 2024 | 2024年
关键词
Optical Music Recognition; OMR; musical documents annotation; deep neural networks; ontology; music encoding; MEI;
D O I
10.1145/3660570.3660571
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper describes an online tool, OMRAT, for semi-automatic annotation of music scores for Optical Music Recognition (OMR) systems. OMRAT uses deep neural networks, machine learning, and music notation ontologies at different stages to respectively detect musical objects, establish relationships between them, and convert them into a machine-readable format MEI. A human editor verifies the output of the recognition stage to correct potential errors and remove incorrect labels as needed. The tool can create training/testing datasets for OMR systems and may be used for notation editors or audio synthesizers.
引用
收藏
页码:73 / 77
页数:5
相关论文
共 20 条
  • [1] Mobile System for Optical Music Recognition and Music Sound Generation
    Adamska, Julia
    Piecuch, Mateusz
    Podgorski, Mateusz
    Walkiewicz, Piotr
    Lukasik, Ewa
    [J]. COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT, 2015, 9339 : 571 - 582
  • [2] Calvo-Zaragoza J., 2018, P 19 INT SOC MUS INF, P248, DOI 10.5281/zenodo.1492395
  • [3] Understanding Optical Music Recognition
    Calvo-Zaragoza, Jorge
    Hajic, Jan, Jr.
    Pacha, Alexander
    [J]. ACM COMPUTING SURVEYS, 2020, 53 (04)
  • [4] Handwritten Music Recognition for Mensural notation with convolutional recurrent neural networks
    Calvo-Zaragoza, Jorge
    Toselli, Alejandro H.
    Vidal, Enrique
    [J]. PATTERN RECOGNITION LETTERS, 2019, 128 : 115 - 121
  • [5] Castellanos F. J., 2020, P 21 INT SOC MUS INF, P558
  • [6] Chan Shing, 2024, arXiv, DOI [DOI 10.48550/ARXIV.2402, 10.48550/arXiv.2402]
  • [7] Fujinaga Ichiro, 1997, Ph. D. Dissertation
  • [8] A holistic approach for image-to-graph: application to optical music recognition
    Garrido-Munoz, Carlos
    Rios-Vila, Antonio
    Calvo-Zaragoza, Jorge
    [J]. INTERNATIONAL JOURNAL ON DOCUMENT ANALYSIS AND RECOGNITION, 2022, 25 (04) : 293 - 303
  • [9] The MUSCIMA plus plus Dataset for Handwritten Optical Music Recognition
    Hajic, Jan, Jr.
    Pecina, Pavel
    [J]. 2017 14TH IAPR INTERNATIONAL CONFERENCE ON DOCUMENT ANALYSIS AND RECOGNITION (ICDAR), VOL 1, 2017, : 39 - 46
  • [10] Hankinson Andrew., 2014, Optical Music Recognition Infrastructure for Large-Scale Music Document Analysis