UIEDP: Boosting underwater image enhancement with diffusion prior

被引:13
作者
Du, Dazhao [1 ]
Li, Enhan [1 ]
Si, Lingyu [2 ,3 ]
Zhai, Wenlong [3 ]
Xu, Fanjiang [3 ]
Niu, Jianwei [1 ]
Sun, Fuchun [3 ,4 ]
机构
[1] Beihang Univ, Hangzhou Innovat Inst, Hangzhou 310000, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 101408, Peoples R China
[3] Chinese Acad Sci, Inst Software, Beijing, Peoples R China
[4] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
关键词
Underwater image enhancement; Underwater image restoration; Computer vision; Denoising diffusion probabilistic models; RESTORATION;
D O I
10.1016/j.eswa.2024.125271
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Underwater image enhancement (UIE) aims to generate clear images from low-quality underwater images. Due to the unavailability of clear reference images, researchers often synthesize them to construct paired datasets for training deep models. However, these synthesized images may sometimes lack quality, adversely affecting training outcomes. To address this issue, we propose to boost UIE with Diffusion Prior (UIEDP). It is a novel framework treating UIE as a posterior distribution sampling process of clear images conditioned on degraded underwater inputs. Specifically, UIEDP combines a pre-trained diffusion model capturing natural image priors with any existing UIE algorithm, leveraging the latter to guide conditional generation. The diffusion prior mitigates the drawbacks of inferior synthetic images, resulting in higher-quality image generation. Extensive experiments have demonstrated that our UIEDP yields significant improvements across various metrics, especially no-reference image quality assessment. And the generated enhanced images also exhibit a more natural appearance.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Sea-thru: A Method For Removing Water From Underwater Images [J].
Akkaynak, Derya ;
Treibitz, Tali .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :1682-1691
[2]   Color Balance and Fusion for Underwater Image Enhancement [J].
Ancuti, Codruta O. ;
Ancuti, Cosmin ;
De Vleeschouwer, Christophe ;
Bekaert, Philippe .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (01) :379-393
[3]  
Ancuti C, 2012, PROC CVPR IEEE, P81, DOI 10.1109/CVPR.2012.6247661
[4]   Blended Diffusion for Text-driven Editing of Natural Images [J].
Avrahami, Omri ;
Lischinski, Dani ;
Fried, Ohad .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :18187-18197
[5]  
Ba J, 2014, ACS SYM SER
[6]   Domain Adaptation for Underwater Image Enhancement via Content and Style Separation [J].
Chen, Yu-Wei ;
Pei, Soo-Chang .
IEEE ACCESS, 2022, 10 :90523-90534
[7]   PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN With Dual-Discriminators [J].
Cong, Runmin ;
Yang, Wenyu ;
Zhang, Wei ;
Li, Chongyi ;
Guo, Chun-Le ;
Huang, Qingming ;
Kwong, Sam .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 :4472-4485
[8]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[9]  
Dhariwal P, 2021, ADV NEUR IN, V34
[10]   Transmission Estimation in Underwater Single Images [J].
Drews-, P., Jr. ;
do Nascimento, E. ;
Moraes, F. ;
Botelho, S. ;
Campos, M. .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2013, :825-830