Integrable systems in magnetic fields: the generalized parabolic cylindrical case

被引:1
作者
Kubu, O. [1 ]
Marchesiello, A. [2 ]
Snobl, L. [1 ]
机构
[1] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Brehova 7, Prague 1, Czech Republic
[2] Czech Tech Univ, Fac Informat Technol, Dept Appl Math, Thakurova 9, Prague 6, Czech Republic
关键词
integrability; magnetic field; generalized parabolic cylindrical; nonseparable; SEPARATION; SYMMETRIES;
D O I
10.1088/1751-8121/ad4936
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This article is a contribution to the classification of quadratically integrable systems with vector potentials whose integrals are of the nonstandard, nonseparable type. We focus on generalized parabolic cylindrical case, related to non-subgroup-type coordinates. We find three new systems, two with magnetic fields polynomial in Cartesian coordinates and one with unbounded exponential terms. The limit in the parameters of the integrals yields a new parabolic cylindrical system; the limit of vanishing magnetic fields leads to the free motion. This confirms the conjecture that non-subgroup type integrals can be related to separable systems only in a trivial manner.
引用
收藏
页数:21
相关论文
共 35 条
[1]   New varieties of helical undulators [J].
Balal, N. ;
Bratman, V. L. ;
Magory, E. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 971
[2]   Variable separation for natural Hamiltonians with scalar and vector potentials on Riemannian manifolds [J].
Benenti, S ;
Chanu, C ;
Rastelli, G .
JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (05) :2065-2091
[3]   Integrable and superintegrable quantum systems in a magnetic field [J].
Bérubé, J ;
Winternitz, P .
JOURNAL OF MATHEMATICAL PHYSICS, 2004, 45 (05) :1959-1973
[4]   Higher-order superintegrability of a Holt related potential [J].
Campoamor-Stursberg, R. ;
Carinena, J. F. ;
Ranada, M. F. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (43)
[5]   On particular integrability in classical mechanics [J].
Escobar-Ruiz, A. M. ;
Azuaje, R. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (10)
[6]   General Nth-order superintegrable systems separating in polar coordinates [J].
Escobar-Ruiz, A. M. ;
Winternitz, P. ;
Yurdusen, I .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (40)
[7]   Fourth order superintegrable systems separating in polar coordinates. I. Exotic potentials [J].
Escobar-Ruiz, A. M. ;
Lopez Vieyra, J. C. ;
Winternitz, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (49)
[8]   Cylindrical type integrable classical systems in a magnetic field [J].
Fournier, F. ;
Snobl, L. ;
Winternitz, P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (08)
[9]   ON HIGHER SYMMETRIES IN QUANTUM MECHANICS [J].
FRIS, J ;
MANDROSOV, V ;
SMORODINSKY, YA ;
UHLIR, M ;
WINTERNITZ, P .
PHYSICS LETTERS, 1965, 16 (03) :354-+
[10]   Superintegrable relativistic systems in spacetime-dependent background fields [J].
Heinzl, T. ;
Ilderton, A. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (34)