FIXED POINT THEOREM ON SOME ORDERED METRIC SPACES AND ITS APPLICATION

被引:0
作者
Shin, Chang hyeob [1 ]
机构
[1] Dankook Univ, Coll Engn, Yongin 16890, South Korea
来源
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS | 2024年 / 42卷 / 01期
关键词
Fuzzy norm; order; fixed point; stability; FUNCTIONAL-EQUATION; STABILITY; FUZZY; HYERS;
D O I
10.14317/jami.2024.093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. In this paper, we will prove a fixed point theorem for selfmappings on a generalized quasi-ordered metric space which is a generalization of the concept of a generalized metric space with a partial order and we investigate a genralized quasi-ordered metric space related with fuzzy normed spaces. Further, we prove the stability of some functional equations in fuzzy normed spaces as an application of our fixed point theorem.
引用
收藏
页码:93 / 104
页数:12
相关论文
共 29 条
[21]   Fuzzy versions of Hyers-Ulam-Rassias theorem [J].
Mirmostafaee, Alireza Kamel ;
Moslehian, Mohammad Sal .
FUZZY SETS AND SYSTEMS, 2008, 159 (06) :720-729
[22]   Fuzzy stability of the Jensen functional equation [J].
Mirmostafolee, A. K. ;
Mirzavaziri, A. ;
Moslehian, M. S. .
FUZZY SETS AND SYSTEMS, 2008, 159 (06) :730-738
[23]   A fixed point approach to stability of a quadratic equation [J].
Mirzavaziri, M. ;
Moslehian, M. S. .
BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2006, 37 (03) :361-376
[24]   Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations [J].
Nieto, JJ ;
Rodríguez-López, R .
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2005, 22 (03) :223-239
[25]  
Park Kyoo-Hong, 2004, [Bulletin of the KMS, 대한수학회보], V41, P347
[26]  
Rassias J.M., 2001, Glasnik matematicki, V36, P63
[27]   STABILITY OF LINEAR MAPPING IN BANACH-SPACES [J].
RASSIAS, TM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 72 (02) :297-280
[28]  
Ulam SM., 1960, A Collection of Mathematical Problems
[29]   Fuzzy normed space of operators and its completeness [J].
Xiao, HZ ;
Zhu, XH .
FUZZY SETS AND SYSTEMS, 2003, 133 (03) :389-399