Vinogradov's three primes theorem in the intersection of multiple Piatetski-Shapiro sets

被引:0
|
作者
Li, Xiaotian [1 ]
Li, Jinjiang [1 ]
Zhang, Min [2 ]
机构
[1] China Univ Min & Technol, Dept Math, Beijing 100083, Peoples R China
[2] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Piatetski-Shapiro sets; Exponential sum; Asymptotic formula; NUMBERS;
D O I
10.1007/s13226-024-00604-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Vinogradov's three primes theorem indicates that, for every sufficiently large odd integer N, the equation N=p1+p2+p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=p_1+p_2+p_3$$\end{document} is solvable in prime variables p1,p2,p3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1,p_2,p_3$$\end{document}. In this paper, it is proved that Vinogradov's three primes theorem still holds with three prime variables constrained in the intersection of multiple Piatetski-Shapiro sequences.
引用
收藏
页数:15
相关论文
共 26 条