Probabilistic analysis of width-limited 3D slope considering spatial variability of Hoek-Brown rock masses

被引:0
作者
Sun, Zhibin [1 ]
Ding, Juncao [1 ]
Yang, Xiaoli [2 ]
Wang, Yixian [3 ]
Dias, Daniel [4 ]
机构
[1] Hefei Univ Technol, Sch Automot & Transportat Engn, Hefei 230009, Peoples R China
[2] Cent South Univ, Sch Civil Engn, Changsha 410114, Peoples R China
[3] Hefei Univ Technol, Sch Civil Engn, Hefei 230009, Peoples R China
[4] Univ Grenoble Alpes, Inst Polytech Grenoble, French Natl Ctr Sci Res CNRS, Lab Sols Struct Risques Labs 3SR, F-38000 Grenoble, France
基金
中国国家自然科学基金;
关键词
Reliability analysis; Rock slope; Hoek-Brown criterion; Spatial variability; Spare polynomial chaos expansion; STABILITY ANALYSIS; BEARING CAPACITY; STRIP FOUNDATIONS; RELIABILITY; TUNNEL; CHARTS;
D O I
10.1007/s00603-024-04059-2
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The inherent spatial variability of rock mass strength has been explicitly considered in reliability analyses of slopes governed by the Hoek-Brown(HB) criterion. However, previous studies have primarily focused on extensive slopes where plane strain analysis is applicable, neglecting rock slopes constrained by boundaries that exhibit significant 'end effects' and are unsuitable for two-dimensional(2D) analysis. To bridge this gap, this research presents a novel three-dimensional(3D) reliability framework designed specifically for width-limited slopes in spatially variable rock masses. Considering the efficiency limitation of previously widely adopted numerical simulations, which struggle to accommodate extensive computation task, this study constructs the deterministic model using upper bound limit analysis (UBLA). A discretized mechanism is developed to determine the safety factor of spatially variable HB slopes. The integration of accelerated search strategies enables the determination of a solution to safety factor within a mere 5 min, mitigating the computational burden associated with high-dimensional stochastic problems or scenarios with a low probability of failure. Probabilistic analysis is conducted using a metamodel Sparse Polynomial Chaos Expansion (SPCE) in conjunction with Monte Carlo Simulation (MCS). Parametric analysis is employed to investigate the influence of various factors on slope reliability, including the autocorrelation length, coefficient of variation of strength, and correlation coefficient. This research presents a novel, computationally efficient deterministic model for slopes characterized by spatial variability in HB strength parameters. Furthermore, the employed principles show promising applicability in adjacent fields, such as tunneling and foundation engineering. Develops a novel 3D reliability framework for width-limited slopes in spatially variable rock masses governed by the Hoek-Brown criterion.Develops an efficient UBLA-based deterministic model with a 3D spatial discretized technique and accelerated search strategies, reducing Fs computing time to within 5 mins.Integrates SPCE metamodel and MCS for probabilistic analysis, enabling investigation of various factors on slope reliability.The employed principles demonstrate promising applicability in adjacent fields, such as tunneling and foundation engineering.
引用
收藏
页码:9759 / 9780
页数:22
相关论文
共 54 条
[1]  
Ai-Bittar T, 2017, GEORISK, V11, P215, DOI 10.1080/17499518.2016.1232831
[2]  
Baligh M.M., 1975, J GEOTECHNICAL ENG D, V101, P1105, DOI DOI 10.1061/AJGEB6.0000210
[3]   An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis [J].
Blatman, Geraud ;
Sudret, Bruno .
PROBABILISTIC ENGINEERING MECHANICS, 2010, 25 (02) :183-197
[4]   Bayesian Approach for Probabilistic Site Characterization Using Cone Penetration Tests [J].
Cao, Zijun ;
Wang, Yu .
JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, 2013, 139 (02) :267-276
[5]   A Comparative Study of Different Approaches for Factor of Safety Calculations by Shear Strength Reduction Technique for Non-linear Hoek-Brown Failure Criterion [J].
Chakraborti, Sukanya ;
Konietzky, Heinz ;
Walter, Katrin .
GEOTECHNICAL AND GEOLOGICAL ENGINEERING, 2012, 30 (04) :925-934
[6]   Reliability assessment on stability of tunnelling perpendicularly beneath an existing tunnel considering spatial variabilities of rock mass properties [J].
Chen Fuyong ;
Wang Lin ;
Zhang Wengang .
TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2019, 88 :276-289
[7]   Limit equilibrium method for rock slope stability analysis by using the Generalized Hoek-Brown criterion [J].
Deng Dong-ping ;
Li Liang ;
Wang Jian-feng ;
Zhao Lian-heng .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2016, 89 :176-184
[8]   LIMIT PLASTICITY APPROACH TO PIPING IN BINS [J].
DRESCHER, A .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1983, 50 (03) :549-553
[9]   The extended/generalized finite element method: An overview of the method and its applications [J].
Fries, Thomas-Peter ;
Belytschko, Ted .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 84 (03) :253-304
[10]   An analytical solution in probabilistic rock slope stability assessment based on random fields [J].
Gravanis, Elias ;
Pantelidis, Lysandros ;
Griffiths, D. V. .
INTERNATIONAL JOURNAL OF ROCK MECHANICS AND MINING SCIENCES, 2014, 71 :19-24