Quasi-1D Conductive Network Composites for Ultra-Sensitive Strain Sensing

被引:1
作者
Gao, Zhiyi [1 ,2 ]
Xu, Dan [1 ,2 ,3 ]
Li, Shengbin [1 ,2 ]
Zhang, Dongdong [4 ]
Xiang, Ziyin [1 ,2 ]
Zhang, Haifeng [1 ,2 ]
Wu, Yuanzhao [1 ,2 ]
Liu, Yiwei [1 ,2 ,3 ]
Shang, Jie [1 ,2 ,3 ,5 ]
Li, Run-Wei [1 ,2 ,3 ,5 ]
机构
[1] Chinese Acad Sci, CAS Key Lab Magnet Mat & Devices, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[2] Chinese Acad Sci, Zhejiang Prov Key Lab Magnet Mat & Applicat Techn, Ningbo Inst Mat Technol & Engn, Ningbo 315201, Peoples R China
[3] Univ Chinese Acad Sci, Coll Mat Sci & Optoelect Technol, Beijing 100049, Peoples R China
[4] Ningbo Univ Technol, Inst Micro Nano Mat & Devices, Ningbo 315211, Peoples R China
[5] Univ Chinese Acad Sci, Sch Future Technol, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
acoustic perception; conductive composites; flexible strain sensor; percolation effect; ultra-sensitive; ELASTOMER;
D O I
10.1002/advs.202403635
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Highly performance flexible strain sensor is a crucial component for wearable devices, human-machine interfaces, and e-skins. However, the sensitivity of the strain sensor is highly limited by the strain range for large destruction of the conductive network. Here the quasi-1D conductive network (QCN) is proposed for the design of an ultra-sensitive strain sensor. The orientation of the conductive particles can effectively reduce the number of redundant percolative pathways in the conductive composites. The maximum sensitivity will reach the upper limit when the whole composite remains only "one" percolation pathway. Besides, the QCN structure can also confine the tunnel electron spread through the rigid inclusions which significantly enlarges the strain-resistance effect along the tensile direction. The strain sensor exhibits state-of-art performance including large gauge factor (862227), fast response time (24 ms), good durability (cycled 1000 times), and multi-mechanical sensing ability (compression, bending, shearing, air flow vibration, etc.). Finally, the QCN sensor can be exploited to realize the human-machine interface (HMI) application of acoustic signal recognition (instrument calibration) and spectrum restoration (voice parsing).
引用
收藏
页数:9
相关论文
共 40 条
[1]   Channel-Crack-Designed Suspended Sensing Membrane as a Fully Flexible Vibration Sensor with High Sensitivity and Dynamic Range [J].
Chen, Xiaoliang ;
Zeng, Qian ;
Shao, Jinyou ;
Li, Sheng ;
Li, Xiangming ;
Tian, Hongmiao ;
Liu, Guifang ;
Nie, Bangbang ;
Luo, Yongsong .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (29) :34637-34647
[2]   Charge Carrier Mobility and Series Resistance Extraction in 2D Field-Effect Transistors: Toward the Universal Technique [J].
Chien, Yu-Chieh ;
Feng, Xuewei ;
Chen, Li ;
Chang, Kai-Chun ;
Tan, Wee Chong ;
Li, Sifan ;
Huang, Li ;
Ang, Kah-Wee .
ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (41)
[3]   Superhydrophobic gradient wrinkle strain sensor with ultra-high sensitivity and broad strain range for motion monitoring† [J].
Chu, Zhenming ;
Jiao, Weicheng ;
Huang, Yifan ;
Zheng, Yongting ;
Wang, Rongguo ;
He, Xiaodong .
JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (15) :9634-9643
[4]   Dual-Phase Inspired Soft Electronic Sensors with Programmable and Tunable Mechanical Properties [J].
Deng, Yun ;
Guo, Xiaogang ;
Lin, Yongshui ;
Huang, Zhixin ;
Li, Ying .
ACS NANO, 2023, 17 (07) :6410-6434
[5]   Ultraflexible Temperature-Strain Dual-Sensor Based on Chalcogenide Glass-Polymer Film for Human-Machine Interaction [J].
Fu, Yanqing ;
Kang, Shiliang ;
Xiang, Guofeng ;
Su, Chengran ;
Gao, Chengwei ;
Tan, Linling ;
Gu, Hao ;
Wang, Shengpeng ;
Zheng, Zhuanghao ;
Dai, Shixun ;
Lin, Changgui .
ADVANCED MATERIALS, 2024, 36 (23)
[6]   High-performance flexible strain sensor with bio-inspired crack arrays [J].
Han, Zhiwu ;
Liu, Linpeng ;
Zhang, Junqiu ;
Han, Qigang ;
Wang, Kejun ;
Song, Honglie ;
Wang, Ze ;
Jiao, Zhibin ;
Niu, Shichao ;
Ren, Luquan .
NANOSCALE, 2018, 10 (32) :15178-15186
[7]   A Novel Class of Strain Gauges Based on Layered Percolative Films of 2D Materials [J].
Hempel, Marek ;
Nezich, Daniel ;
Kong, Jing ;
Hofmann, Mario .
NANO LETTERS, 2012, 12 (11) :5714-5718
[8]   Ultrasensitive and Wearable Carbon Hybrid Fiber Devices as Robust Intelligent Sensors [J].
Hu, Yunfeng ;
Huang, Tieqi ;
Zhang, Hongjian ;
Lin, Huijuan ;
Zhang, Yao ;
Ke, Longwei ;
Cao, Wei ;
Hu, Kang ;
Ding, Ying ;
Wang, Xueyou ;
Rui, Kun ;
Zhu, Jixin ;
Huang, Wei .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (20) :23905-23914
[9]   Highly Sensitive Strain Sensors Based on Molecules-Gold Nanoparticles Networks for High-Resolution Human Pulse Analysis [J].
Huang, Chang-Bo ;
Yao, Yifan ;
Montes-Garcia, Veronica ;
Stoeckel, Marc-Antoine ;
Von Holst, Miriam ;
Ciesielski, Artur ;
Samori, Paolo .
SMALL, 2021, 17 (08)
[10]   Porous Fibers Composed of Polymer Nanoball Decorated Graphene for Wearable and Highly Sensitive Strain Sensors [J].
Huang, Tao ;
He, Peng ;
Wang, Ranran ;
Yang, Siwei ;
Sun, Jing ;
Xie, Xiaoming ;
Ding, Guqiao .
ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (45)