Neighbor Spectra Maintenance and Context Affinity Enhancement for Single Hyperspectral Image Super-Resolution

被引:6
|
作者
Wang, Heng [1 ,2 ]
Wang, Cong [2 ,3 ]
Yuan, Yuan [2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Peoples R China
[2] Northwestern Polytech Univ, Sch Artificial Intelligence OPt & Elect iOPEN, Xian 710072, Peoples R China
[3] Northwestern Polytech Univ Shenzhen, Res & Dev Inst, Shenzhen 518057, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2024年 / 62卷
关键词
Hyperspectral imaging; Spatial resolution; Image reconstruction; Feature extraction; Convolution; Superresolution; Three-dimensional displays; Affinity enhancement (AE); complementary information hyperspectral image; image super-resolution (SR); two-stage network; CONVOLUTIONAL NETWORK;
D O I
10.1109/TGRS.2024.3389098
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Single hyperspectral image super-resolution (HIS) aims to improve the spatial resolution of a hyperspectral image without relying on auxiliary information. By taking advantage of the high similarity among neighbor bands, some recent methods have used a recursive structure to super-resolve a hyperspectral image band-by-band. They are usually memory-efficient and perform well. However, they tend to introduce feedback information without distinction so as to weaken the utilization of complementary information in the context. In addition, the spectral structure is inevitably destroyed when spatial information is extracted from neighbor bands, which hampers the effective exploration of spectral information in the subsequent process. To this end, we propose a two-stage network based on neighbor spectra maintenance and context affinity enhancement (AE), which is composed of two subnetworks: neighbor network and context network. The former uses several neighbor bands to generate the neighbor spatial-spectral feature, incorporating a parallel processing scheme designed to reduce spectral distortion. Then we construct a relationship representation between the neighbor feature and feedback context information in the context network. By referring to the representation, the contents with higher complementarity will be highlighted in this stage. Experimental results on five public hyperspectral image datasets demonstrate that the proposed network not only outperforms state-of-the-art methods in terms of spatial reconstruction accuracy and spectral fidelity but also requires less memory usage.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [1] Exploring the Spectral Prior for Hyperspectral Image Super-Resolution
    Hu, Qian
    Wang, Xinya
    Jiang, Junjun
    Zhang, Xiao-Ping
    Ma, Jiayi
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 5260 - 5272
  • [2] Hyperspectral Image Super-Resolution Based on Multiscale Mixed Attention Network Fusion
    Hu, Jianwen
    Tang, Yuan
    Liu, Yaoting
    Fan, Shaosheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [3] A Spectral Grouping and Attention-Driven Residual Dense Network for Hyperspectral Image Super-Resolution
    Liu, Denghong
    Li, Jie
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (09): : 7711 - 7725
  • [4] Implicit Neural Representation Learning for Hyperspectral Image Super-Resolution
    Zhang, Kaiwei
    Zhu, Dandan
    Min, Xiongkuo
    Zhai, Guangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [5] External-Internal Attention for Hyperspectral Image Super-Resolution
    Guo, Zhiling
    Xin, Jingwei
    Wang, Nannan
    Li, Jie
    Gao, Xinbo
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] DMSN: A Deep Multistream Network for Hyperspectral Image Super-Resolution
    Li, Sheng
    Su, Yuanchao
    Sun, Xu
    Li, Jiaxin
    Li, Boyan
    Gao, Jianjian
    Feng, Xiaohua
    Jiang, Mengying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [7] Implicit Neural Representation Learning for Hyperspectral Image Super-Resolution
    Zhang, Kaiwei
    Zhu, Dandan
    Min, Xiongkuo
    Zhai, Guangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [8] Hyperspectral Image Super-Resolution With ConvLSTM Skip-Connections
    Xu, Yinghao
    Hou, Junyi
    Zhu, Xijun
    Wang, Chao
    Shi, Haodong
    Wang, Jiayu
    Li, Yingchao
    Ren, Peng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 16
  • [9] Deep Posterior Distribution-Based Embedding for Hyperspectral Image Super-Resolution
    Hou, Jinhui
    Zhu, Zhiyu
    Hou, Junhui
    Zeng, Huanqiang
    Wu, Jinjian
    Zhou, Jiantao
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 5720 - 5732
  • [10] Blind Super-Resolution of Single Remotely Sensed Hyperspectral Image
    Liang, Zhiyuan
    Wang, Shuai
    Zhang, Tao
    Fu, Ying
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61