Spontaneous α-C-H Carboxylation of Ketones by Gaseous CO2 at the Air-water Interface of Aqueous Microdroplets

被引:5
作者
Basuri, Pallab [1 ,2 ]
Mukhopadhyay, Sinchan [1 ,2 ]
Reddy, K. S. S. V. Prasad [3 ]
Unni, Keerthana [1 ,2 ]
Spoorthi, B. K. [1 ,2 ]
Kumar, Jenifer Shantha [1 ]
Yamijala, Sharma S. R. K. C. [4 ]
Pradeep, Thalappil [1 ,2 ]
机构
[1] Indian Inst Technol Madras, Dept Chem, DST Unit Nanosci, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Madras, Dept Chem, Themat Unit Excellence, Chennai 600036, Tamil Nadu, India
[3] Indian Inst Technol Madras, Dept Chem, Chennai 600036, Tamil Nadu, India
[4] Indian Inst Technol Madras, Ctr Atomist Modelling & Mat Design, Ctr Mol Mat & Funct, Ctr Quantum Informat Commun & Comp,Dept Chem, Chennai 600036, Tamil Nadu, India
关键词
Carbon dioxide reduction; microdroplet chemistry; air-water interface; mass spectrometry; carbanion; LITHIUM-ION BATTERIES; SILICON ANODE; LI-ION; PRELITHIATION; GRAPHITE; PERFORMANCE;
D O I
10.1002/anie.202403229
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We present a catalyst-free route for the reduction of carbon dioxide integrated with the formation of a carbon-carbon bond at the air/water interface of negatively charged aqueous microdroplets, at ambient temperature. The reactions proceed through carbanion generation at the alpha-carbon of a ketone followed by nucleophilic addition to CO2. Online mass spectrometry reveals that the product is an alpha-ketoacid. Several factors, such as the concentration of the reagents, pressure of CO2 gas, and distance traveled by the droplets, control the kinetics of the reaction. Theoretical calculations suggest that water in the microdroplets facilitates this unusual chemistry. Furthermore, such a microdroplet strategy has been extended to seven different ketones. This work demonstrates a green pathway for the reduction of CO2 to useful carboxylated organic products.
引用
收藏
页数:7
相关论文
共 42 条
[1]   The catalytic effect of water on the keto-enol tautomerism. Pyruvate and acetylacetone: a computational challenge [J].
Alagona, Giuliano ;
Ghio, Caterina ;
Nagy, Peter I. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (35) :10173-10188
[2]   Carbon dioxide utilization via carbonate-promoted C-H carboxylation [J].
Banerjee, Aanindeeta ;
Dick, Graham R. ;
Yoshino, Tatsuhiko ;
Kanan, Matthew W. .
NATURE, 2016, 531 (7593) :215-+
[3]   Spatial reorganization of analytes in charged aqueous microdroplets [J].
Basuri, Pallab ;
Chakraborty, Amrita ;
Ahuja, Tripti ;
Mondal, Biswajit ;
Kumar, Jenifer Shantha ;
Pradeep, Thalappil .
CHEMICAL SCIENCE, 2022, 13 (45) :13321-13329
[4]   Accelerated microdroplet synthesis of benzimidazoles by nucleophilic addition to protonated carboxylic acids [J].
Basuri, Pallab ;
Gonzalez, L. Edwin ;
Morato, Nicolas M. ;
Pradeep, Thalappil ;
Cooks, R. Graham .
CHEMICAL SCIENCE, 2020, 11 (47) :12686-12694
[5]   THE ACIDITY AND TAUTOMERISM OF BETA-DIKETONES IN AQUEOUS-SOLUTION [J].
BUNTING, JW ;
KANTER, JP ;
NELANDER, R ;
WU, ZN .
CANADIAN JOURNAL OF CHEMISTRY-REVUE CANADIENNE DE CHIMIE, 1995, 73 (08) :1305-1311
[6]   Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections [J].
Chai, Jeng-Da ;
Head-Gordon, Martin .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (44) :6615-6620
[7]   The role of analyte concentration in accelerated reaction rates in evaporating droplets [J].
Chen, Casey J. ;
Williams, Evan R. .
CHEMICAL SCIENCE, 2023, 14 (18) :4704-4713
[8]   Ammonium Bicarbonate Significantly Accelerates the Microdroplet Reactions of Amines with Carbon Dioxide [J].
Feng, Lulu ;
Yin, Xinchi ;
Tan, Siyuan ;
Li, Chang ;
Gong, Xiaoyun ;
Fang, Xiang ;
Pan, Yuanjiang .
ANALYTICAL CHEMISTRY, 2021, 93 (47) :15775-15784
[9]  
Frisch M. J., 2020, Google Sch. There is no Corresp. Rec. this Ref
[10]   Carboxylation Reactions Using Carbon Dioxide as the C1 Source via Catalytically Generated Allyl Metal Intermediates [J].
Fujihara, Tetsuaki ;
Tsuji, Yasushi .
FRONTIERS IN CHEMISTRY, 2019, 7