Stoch BiRo: Design and Control of a Low-cost Bipedal Robot

被引:1
作者
Mothish, G. V. S. [1 ]
Rajgopal, Karthik [2 ]
Kola, Ravi [1 ]
Tayal, Manan [1 ]
Kolathaya, Shishir [1 ]
机构
[1] Indian Inst Sci IISc, Cyber Phys Syst, Bengaluru, India
[2] BITS Pilani, Mech Engn, Pilani Campus, Pilani, India
来源
2024 10TH INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND ROBOTIC, ICCAR 2024 | 2024年
关键词
Bipedal Robots; Reinforcement Learning; Learning-based Controls; Actuator design;
D O I
10.1109/ICCAR61844.2024.10569443
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces the Stoch BiRo, a cost-effective bipedal robot designed with a modular mechanical structure having point feet to navigate uneven and unfamiliar terrains. The robot employs proprioceptive actuation in abduction, hips, and knees, leveraging a Raspberry Pi4 for control. Overcoming computational limitations, a Learning-based Linear Policy controller manages balance and locomotion with only 3 degrees of freedom (DoF) per leg, distinct from the typical 5DoF in bipedal systems. Integrated within a modular control architecture, these controllers enable autonomous handling of unforeseen terrain disturbances without external sensors or prior environment knowledge. The robot's policies are trained and simulated using MuJoCo, transferring learned behaviors to the Stoch BiRo hardware for initial walking validations. This work highlights the Stoch BiRo's adaptability and cost-effectiveness in mechanical design, control strategies, and autonomous navigation, promising diverse applications in real-world robotics scenarios.
引用
收藏
页码:135 / 140
页数:6
相关论文
共 31 条
[1]  
Apgar T, 2018, ROBOTICS: SCIENCE AND SYSTEMS XIV
[2]  
apptronik, ABOUT US
[3]   Biped dynamic walking using reinforcement learning [J].
Benbrahim, H ;
Franklin, JA .
ROBOTICS AND AUTONOMOUS SYSTEMS, 1997, 22 (3-4) :283-302
[4]   Invariant Extended Kalman Filter: theory and application to a velocity-aided attitude estimation problem [J].
Bonnabel, Silvere ;
Martin, Philippe ;
Salauen, Erwan .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :1297-1304
[5]   Reinforcement Learning-Based Cascade Motion Policy Design for Robust 3D Bipedal Locomotion [J].
Castillo, Guillermo A. ;
Weng, Bowen ;
Zhang, Wei ;
Hereid, Ayonga .
IEEE ACCESS, 2022, 10 :20135-20148
[6]  
Ding YR, 2022, IEEE-RAS INT C HUMAN, P299, DOI 10.1109/Humanoids53995.2022.10000244
[7]   An online active set strategy to overcome the limitations of explicit MPC [J].
Ferreau, H. J. ;
Bock, H. G. ;
Diehl, M. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (08) :816-830
[8]  
Graduate School of Science and Engineering Ehime University Matsuyama Japan, 2016, INT J MECH ENG ROBOT, DOI [10.18178/ijmerr.5.3.196-201, 10.18178/ijmerr.5.3.196-201, DOI 10.18178/IJMERR.5.3.196-201]
[9]   An Open Torque-Controlled Modular Robot Architecture for Legged Locomotion Research [J].
Grimminger, Felix ;
Meduri, Avadesh ;
Khadiv, Majid ;
Viereck, Julian ;
Wuthrich, Manuel ;
Naveau, Maximilien ;
Berenz, Vincent ;
Heim, Steve ;
Widmaier, Felix ;
Flayols, Thomas ;
Fiene, Jonathan ;
Badri-Sproewitz, Alexander ;
Righetti, Ludovic .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :3650-3657
[10]  
Heess N, 2017, Arxiv, DOI [arXiv:1707.02286, DOI 10.48550/ARXIV.1707.02286]