Enhancing Signed Graph Attention Network by Graph Characteristics: An Analysis

被引:0
作者
Kaewhit, Panatda [1 ]
Lewchalermvongs, Chanun [1 ]
Lewchalermvongs, Phakaporn [2 ]
机构
[1] Mahidol Univ, Fac Sci, Dept Math, Bangkok, Thailand
[2] Mahidol Univ, Nakhon Pathom, Thailand
来源
TEM JOURNAL-TECHNOLOGY EDUCATION MANAGEMENT INFORMATICS | 2024年 / 13卷 / 02期
关键词
Graph neural network; graph attention network; signed graph attention network; graph characteristics; graph theory; NEURAL-NETWORK; PREDICTION;
D O I
10.18421/TEM132-05
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
- A graph neural network (GNN) is one of successful methods for handling tasks on a graph data structure, e.g. node embedding, link prediction and node classification. GNNs focus on a graph data structure that must aggregate messages on nodes in the graph to retain a graph -structured information in new node's message and proceed tasks on a graph. One of modifications on the propagation step in GNNs by adopting attention mechanism is a graph attention network (GAT). Applying this modification to signed graphs generated by sociological theories is called signed graph attention network (SiGAT). In this research, we utilize SiGAT and create novel graphs using graph characters to assess the performance of SiGAT models embedded in nodes across various characteristic graphs. The primary focus of our study was linked prediction, which aligns with the task employed in the previous research on SiGAT. We propose a method using graph characteristics to improve the time spent on the learning process in SiGAT.
引用
收藏
页码:885 / 896
页数:12
相关论文
共 50 条
  • [21] A Multi-Role Graph Attention Network for Knowledge Graph Alignment
    Ding, Linyi
    Yuan, Weijie
    Meng, Kui
    Liu, Gongshen
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [22] A dynamic graph attention network with contrastive learning for knowledge graph completion
    Xujiang Li
    Jie Hu
    Jingling Wang
    Tianrui Li
    World Wide Web, 2025, 28 (4)
  • [23] A unified deep sparse graph attention network for scene graph generation
    Zhou, Hao
    Yang, Yazhou
    Luo, Tingjin
    Zhang, Jun
    Li, Shuohao
    PATTERN RECOGNITION, 2022, 123
  • [24] Multi-stream graph attention network for recommendation with knowledge graph
    Hu, Zhifei
    Xia, Feng
    JOURNAL OF WEB SEMANTICS, 2024, 82
  • [25] Graph attention temporal convolutional network for traffic speed forecasting on road networks
    Zhang, Ke
    He, Fang
    Zhang, Zhengchao
    Lin, Xi
    Li, Meng
    TRANSPORTMETRICA B-TRANSPORT DYNAMICS, 2021, 9 (01) : 153 - 171
  • [26] Enhancing Facial Reconstruction Using Graph Attention Networks
    Lee, Hyeong Geun
    Hur, Jee Sic
    Yoon, Yeo Chan
    Kim, Soo Kyun
    IEEE ACCESS, 2023, 11 : 136680 - 136691
  • [27] Graph Attention Network with Relational Dynamic Factual Fusion for Knowledge Graph Completion
    Yu, Mei
    Zuo, Yilin
    Zhang, Wenbin
    Zhao, Mankun
    Xu, Tianyi
    Zhao, Yue
    Guo, Jiujiang
    Yu, Jian
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT IV, ECML PKDD 2024, 2024, 14944 : 89 - 106
  • [28] MRGAT: Multi-Relational Graph Attention Network for knowledge graph completion
    Dai, Guoquan
    Wang, Xizhao
    Zou, Xiaoying
    Liu, Chao
    Cen, Si
    NEURAL NETWORKS, 2022, 154 : 234 - 245
  • [29] Graph Modelling and Graph-Attention Neural Network for Immune Response Prediction
    Sakhamuri, Mallikharjuna Rao
    Henna, Shagufta
    Creedon, Leo
    Meehan, Kevin
    2023 34TH IRISH SIGNALS AND SYSTEMS CONFERENCE, ISSC, 2023,
  • [30] Multi-view Graph Attention Network for Travel Recommendation
    Chen, Lei
    Cao, Jie
    Wang, Youquan
    Liang, Weichao
    Zhu, Guixiang
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 191