Existence of solutions for a class of fractional Kirchhoff variational inequality

被引:0
作者
Deng, Shenbing [1 ]
Luo, Wenshan [1 ]
Ledesma, Cesar E. Torres [2 ]
Quiroz, George W. Alama [3 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
[2] Univ Nacl Trujillo, Dept Matemat, Inst Invest Matemat, Ave Juan Pablo II S-N, Trujillo 13006, Peru
[3] Univ Privada Norte, Fac Estudios Gen, UPN Campus Virtual, Urb San Isidro 2da Etapa, Trujillo 13006, Peru
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2024年 / 43卷 / 1-2期
基金
中国国家自然科学基金;
关键词
Fractional Kirchhoff variational inequality; variational methods; critical nonlinearity; MULTIPLE POSITIVE SOLUTIONS; CRITICAL-POINT THEORY; OBSTACLE PROBLEM; REGULARITY; STABILITY; EQUATION; DRIVEN;
D O I
10.4171/ZAA/1742
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are concerned with the following fractional Kirchhoff variational inequality: (a + b[u] (2) ) integral(3)(R) ( - Delta) (s/2) u( - Delta)( s /2 )(v - u) dx + integral(R) 3 (1 + lambda V (x))u(v - u) dx >= integral(R)3 f (u)(v - u) dx V v E K , where s is an element of (( 3)/ (4) , 1) , lambda > 0 . In this paper, by applying penalization techniques from Bensoussan and Lions (1978) combined with mountain pass theorem, we show the existence and concentration behavior of positive solution to the cited variational inequality. This result extend some results established by Alves, Barros and Torres [J. Math. Anal. Appl. 494 (2021)] to the fractional case.
引用
收藏
页码:149 / 168
页数:20
相关论文
共 40 条
  • [1] Existence and multiplicity of positive solutions for a class of Kirchhoff Laplacian type problems
    Alimohammady, Mohsen
    Alves, Claudianor O.
    Amiri, Hassan Kaffash
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (10)
  • [2] Alves CO, 2023, MEDITERR J MATH, V20, DOI 10.1007/s00009-023-02450-x
  • [3] Existence of solution for a class of variational inequality in whole RN with critical growth
    Alves, Claudianor O.
    Barros, Luciano M.
    Torres Ledesma, Cesar E.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 494 (02)
  • [4] Existence and multiplicity of solutions for a class of elliptic problem with critical growth
    Alves, Claudianor O.
    Barros, Luciano M.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 187 (02): : 195 - 215
  • [5] Ambrosio V., 2021, Frontiers in Elliptic and Parabolic Problems
  • [6] Ambrosio V, 2022, J GEOM ANAL, V32, DOI 10.1007/s12220-022-00876-5
  • [7] [Anonymous], 1993, Topol. Methods Nonlinear Anal.
  • [8] Multiple positive solutions for a nonlinear Schrodinger equation
    Bartsch, T
    Wang, ZQ
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2000, 51 (03): : 366 - 384
  • [9] Bensoussan A., 1978, Meth. Math. Infor., V6
  • [10] Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian
    Caffarelli, Luis A.
    Salsa, Sandro
    Silvestre, Luis
    [J]. INVENTIONES MATHEMATICAE, 2008, 171 (02) : 425 - 461