Solar-Induced Chlorophyll Fluorescence as a Potential Proxy for Gross Primary Production and Methane Emission in a Cool-Temperate Bog in Northern Japan

被引:1
|
作者
Buareal, Kanokrat [1 ,2 ]
Kato, Tomomichi [2 ,3 ]
Morozumi, Tomoki [4 ]
Nakashima, Naohisa [5 ]
Tanatarakeree, Kitpanuwat [2 ]
Ueyama, Masahito [6 ]
Hirano, Takashi [2 ]
机构
[1] Hokkaido Univ, Grad Sch Global Food Resources, Sapporo, Japan
[2] Hokkaido Univ, Res Fac Agr, Sapporo, Japan
[3] Hokkaido Univ, Res Fac Agr, Global Ctr Food Land & Water Resources, Sapporo, Japan
[4] Natl Inst Environm Studies NIES, Tsukuba, Japan
[5] Obihiro Univ Agr & Vet Med, Dept Agroenvironm Sci, Obihiro, Japan
[6] Osaka Metropolitan Univ, Grad Sch Agr, Osaka, Japan
基金
日本学术振兴会;
关键词
fluorescence; spectrometer; wetland ecosystem; methane prediction; PHOTOSYNTHESIS; CANOPY; MECHANISMS; EFFICIENCY; RETRIEVAL; YIELD; LIGHT; LEAF; SIF; RED;
D O I
10.1029/2023JG007956
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wetlands play an essential role in the global greenhouse gas budget via carbon dioxide sequestration as well as methane emission. In recent decades, solar-induced chlorophyll fluorescence (SIF) has been recognized as a remotely sensed proxy of gross primary productivity (GPP), which generates substrates for methane production. To examine the suitability of SIF for estimation of these two fluxes, we conducted ground tower-based SIF observation with an ultrafine-resolution spectroradiometer in conjunction with eddy covariance measurement in a cool-temperate bog. The daily SIF retrieved in the red (687 nm) and far-red (760 nm) bands (SIFred and SIFfar-red, respectively) increased nonlinearly with GPP and linearly with absorbed photosynthetically active radiation (APAR). The relatively weak correlation between apparent SIF yield (Phi SIF = SIF/APAR) and light use efficiency implied that both APAR and plant physiology constrained the SIF emission in this wetland. The SIFred/SIFfar-red ratio showed a significant negative relationship with vegetation greenness indices, and the similar seasonal variation in SIFred and SIFfar-red indicated that the SIFred reabsorption effect only weakly influenced the SIFred-GPP relationship. Episodic temporal reduction in the water table did not distinctly influence SIF and Phi SIF. Estimation of the methane emission rate was subtly improved by incorporating SIF, which was substituted for GPP as the methanogenesis substrate, in a multivariable regression analysis together with two environmental factors: soil temperature and water table depth. This study illustrates the potential of both SIFred and SIFfar-red to monitor GPP and to predict methane emission in wetlands. Wetlands play a crucial role in the carbon cycle on Earth, involving both storing carbon and releasing methane. A small energy emission from plants, known as solar-induced chlorophyll fluorescence (SIF), is a recent discovery that serves as a signal for plant productivity. It's a useful tool for tracking plant productivity. This study was conducted in a cool-temperate bog, and we found that daily SIF measurements increased differently with plant growth and sunlight absorption. This suggests that both sunlight and plant health affect SIF in wetlands. The study also showed that SIF measurements could be useful for monitoring plant growth and predicting methane emissions in wetlands. To make these predictions better, we combined SIF with information about the environment, like soil temperature and water depth. Overall, this research highlights the potential of using SIF measurements to keep an eye on plant growth and predict methane emissions in wetlands. Chlorophyll fluorescence in the 687 and 760 nm bands (SIFred and SIFfar-red) has promise as a photosynthesis proxy in temperate bogs The simple canopy structure of the wetland plant community contributed to a weak reabsorption effect of SIFred Methane prediction improved subtly with incorporation of solar-induced chlorophyll fluorescence and environmental factors in a multivariable regression model
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest
    Naohisa Nakashima
    Tomomichi Kato
    Tomoki Morozumi
    Katsuto Tsujimoto
    Tomoko Kawaguchi Akitsu
    Kenlo Nishida Nasahara
    Shohei Murayama
    Hiroyuki Muraoka
    Hibiki M. Noda
    Journal of Plant Research, 2021, 134 : 713 - 728
  • [22] Area-ratio Fraunhofer line depth (aFLD) method approach to estimate solar-induced chlorophyll fluorescence in low spectral resolution spectra in a cool-temperate deciduous broadleaf forest
    Nakashima, Naohisa
    Kato, Tomomichi
    Morozumi, Tomoki
    Tsujimoto, Katsuto
    Akitsu, Tomoko Kawaguchi
    Nasahara, Kenlo Nishida
    Murayama, Shohei
    Muraoka, Hiroyuki
    Noda, Hibiki M.
    JOURNAL OF PLANT RESEARCH, 2021, 134 (04) : 713 - 728
  • [23] Improving estimates of sub-daily gross primary production from solar-induced chlorophyll fluorescence by accounting for light distribution within canopy
    Chen, Ruonan
    Liu, Liangyun
    Liu, Xinjie
    Liu, Zhunqiao
    Gu, Lianhong
    Rascher, Uwe
    REMOTE SENSING OF ENVIRONMENT, 2024, 300
  • [24] Upscaling Solar-Induced Chlorophyll Fluorescence from an Instantaneous to Daily Scale Gives an Improved Estimation of the Gross Primary Productivity
    Hu, Jiaochan
    Liu, Liangyun
    Guo, Jian
    Du, Shanshan
    Liu, Xinjie
    REMOTE SENSING, 2018, 10 (10):
  • [25] Assessing consistency of spring phenology of snow-covered forests as estimated by vegetation indices, gross primary production, and solar-induced chlorophyll fluorescence
    Chang, Qing
    Xia, Xiangming
    Jiao, Wenzhe
    Wu, Xiaocui
    Doughty, Russell
    Wang, Jie
    Du, Ling
    Zou, Zhenhua
    Qin, Yuanwei
    AGRICULTURAL AND FOREST METEOROLOGY, 2019, 275 : 305 - 316
  • [26] The Links between Canopy Solar-Induced Chlorophyll Fluorescence and Gross Primary Production Responses to Meteorological Factors in the Growing Season in Deciduous Broadleaf Forest
    Cheng, Xiangfen
    Zhou, Yu
    Hu, Meijun
    Wang, Feng
    Huang, Hui
    Zhang, Jinsong
    REMOTE SENSING, 2021, 13 (12)
  • [27] Improved estimation of gross primary productivity (GPP) using solar-induced chlorophyll fluorescence (SIF) from photosystem II
    Guo, Chenhui
    Liu, Zhunqiao
    Jin, Xiaoqian
    Lu, Xiaoliang
    AGRICULTURAL AND FOREST METEOROLOGY, 2024, 354
  • [28] The Relationship of Gross Primary Productivity with NDVI Rather than Solar-Induced Chlorophyll Fluorescence Is Weakened under the Stress of Drought
    Zhao, Wenhui
    Rong, Yuping
    Zhou, Yangzhen
    Zhang, Yanrong
    Li, Sheng
    Liu, Leizhen
    REMOTE SENSING, 2024, 16 (03)
  • [29] Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations
    Chen, Anping
    Mao, Jiafu
    Ricciuto, Daniel
    Xiao, Jingfeng
    Frankenberg, Christian
    Li, Xing
    Thornton, Peter E.
    Gu, Lianhong
    Knapp, Alan K.
    GLOBAL CHANGE BIOLOGY, 2021, 27 (06) : 1144 - 1156
  • [30] Monitoring and Assessing the 2012 Drought in the Great Plains: Analyzing Satellite-Retrieved Solar-Induced Chlorophyll Fluorescence, Drought Indices, and Gross Primary Production
    Wang, Siheng
    Huang, Changping
    Zhang, Lifu
    Lin, Yi
    Cen, Yi
    Wu, Taixia
    REMOTE SENSING, 2016, 8 (02):