Proof of some congruence conjectures of Z.-H. Sun involving Apery-like numbers

被引:0
作者
Mao, Guo-Shuai [1 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Dept Math, Nanjing 210044, Peoples R China
基金
中国国家自然科学基金;
关键词
Congruences; Franel numbers; Bernoulli numbers; Euler numbers; Fermat quotient; BERNOULLI NUMBERS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly prove the following conjecture of Sun[Congruences involving binomial coefficients and Apery-like numbers, Publ. Math. Debrecen 96 (2020), pp. 315-346]: Let p>3 be a prime. Then Sigma(p-1)(k=0)((2)(k))3k+1/(-16)kf(k) equivalent to (-1)((p-1)/2)p+p(3)E(p-3)(mod p(4)), where f(n) = Sigma(n)(k=0)((n)(k))(3) and E-n stand for the nth Franel number and nth Euler number, respectively.
引用
收藏
页码:592 / 602
页数:11
相关论文
共 28 条
[1]  
Callan D., 2008, J. Integer Seq, V11
[2]   A THEOREM OF GLAISHER [J].
CARLITZ, L .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1953, 5 (03) :306-316
[3]  
Franel J., 1894, L'Intermdiaire Des Mathmaticiens, V1, P45
[4]  
Glaisher JWL., 1900, Quart. J. Math, V31, P1
[5]  
Glaisher JWL., 1900, Quarterly Journal of Pure and Applied Mathematics, V31, P321
[6]   Proof of a supercongruence conjectured by Z.-H. Sun [J].
Guo, Victor J. W. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2014, 25 (12) :1009-1015
[7]   Proof of two conjectures of Sun on congruences for Franel numbers [J].
Guo, Victor J. W. .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2013, 24 (07) :532-539
[8]  
Ireland K., 1990, Graduate Texts in Math, V84
[9]   On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson [J].
Lehmer, E .
ANNALS OF MATHEMATICS, 1938, 39 :350-360
[10]   On two supercongruences for sums of Apery-like numbers [J].
Liu, Ji-Cai .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)