Dihydrotanshinone I inhibits gallbladder cancer growth by targeting the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation

被引:3
|
作者
Li, Zhuang [1 ,2 ]
Mo, Rong-liang [3 ]
Gong, Jun-feng [1 ]
Han, Lin [1 ]
Wang, Wen-fei [1 ]
Huang, Da-ke [3 ]
Xu, Jie-gou [3 ]
Sun, Yan-jun [1 ]
Chen, Shuo [2 ]
Han, Gen-cheng [3 ]
Sun, Deng-qun [1 ]
机构
[1] Chinese Peoples Armed Police Forces Anhui Prov Cor, Dept Gen Surg, Hefei 230041, Peoples R China
[2] Anhui Univ Chinese Med, Res Technol Ctr, Hefei 230038, Peoples R China
[3] Anhui Med Univ, Sch Basic Med Sci, Hefei 230032, Peoples R China
关键词
Dihydrotanshinone I; Gallbladder carcinoma; Keap1-Nrf2 signaling pathway; Oxidative stress; Apoptosis; APOPTOSIS; ROS;
D O I
10.1016/j.phymed.2024.155661
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Background: Gallbladder cancer (GBC) poses a significant risk to human health. Its development is influenced by numerous factors, particularly the homeostasis of reactive oxygen species (ROS) within cells. This homeostasis is crucial for tumor cell survival, and abnormal regulation of ROS is associated with the occurrence and progression of many cancers. Dihydrotanshinone I (DHT I), a biologically effective ingredient isolated from Salvia miltiorrhiza, has exhibited cytotoxic properties against various tumor cells by inducing apoptosis. However, the precise molecular mechanisms by which dht I exerts its cytotoxic effects remain unclear. Purpose: To explore the anti-tumor impact of dht I on GBC and elucidate the potential molecular mechanisms. Methods: The proliferation of GBC cells, NOZ and SGC-996, was assessed using various assays, including CCK-8 assay, colony formation assay and EdU staining. We also examined cell apoptosis, cell cycle progression, ROS levels, and alterations in mitochondrial membrane potential to delve into the intricate molecular mechanism. Quantitative PCR (qPCR), immunofluorescence staining, and Western blotting were performed to evaluate target gene expression at both the mRNA and protein levels. The correlation between nuclear factor erythroid 2-related factor 2 (Nrf2) and kelch-like ECH-associated protein 1 (Keap1) were examined using co-immunoprecipitation. Finally, the in vivo effect of dht I was investigated using a xenograft model of gallbladder cancer in mice. Results: Our research findings indicated that dht I exerted cytotoxic effects on GBC cells, including inhibiting proliferation, disrupting mitochondrial membrane potential, inducing oxidative stress and apoptosis. Our in vivo studies substantiated the inhibition of dht I on tumor growth in xenograft nude mice. Mechanistically, dht I primarily targeted Nrf2 by promoting Keap1 mediated Nrf2 degradation and inhibiting protein kinase C (PKC) induced Nrf2 phosphorylation. This leads to the suppression of Nrf2 nuclear translocation and reduction of its target gene expression. Moreover, Nrf2 overexpression effectively counteracted the anti-tumor effects of dht I, while Nrf2 knockdown significantly enhanced the inhibitory effect of dht I on GBC. Meanwhile, PKC inhibitors and nuclear import inhibitors increased the sensitivity of GBC cells to dht I treatment. Conversely, Nrf2 activators, proteasome inhibitors, antioxidants and PKC activators all antagonized dht I induced apoptosis and ROS generation in NOZ and SGC-996 cells. Conclusion: Our findings indicated that dht I inhibited the growth of GBC cells by regulating the Keap1-Nrf2 signaling pathway and Nrf2 phosphorylation. These insights provide a strong rationale for further investigation of dht I as a potential therapeutic agent for GBC treatment.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Dysregulation of the Keap1-Nrf2 pathway in cancer
    Leinonen, Hanna M.
    Kansanen, Emilia
    Polonen, Petri
    Heinaniemi, Merja
    Levonen, Anna-Liisa
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2015, 43 : 645 - 649
  • [2] Role of the Keap1-Nrf2 Pathway in Cancer
    Leinonen, Hanna M.
    Kansanen, Emilia
    Polonen, Petri
    Heinaniemi, Merja
    Levonen, Anna-Liisa
    REDOX AND CANCER, PT A, 2014, 122 : 281 - 320
  • [3] Molecular Basis of the KEAP1-NRF2 Signaling Pathway
    Suzuki, Takafumi
    Takahashi, Jun
    Yamamoto, Masayuki
    MOLECULES AND CELLS, 2023, 46 (03) : 133 - 141
  • [4] Keap1/Nrf2 Signaling Pathway
    Sykiotis, Gerasimos P.
    ANTIOXIDANTS, 2021, 10 (06)
  • [5] The Nrf2-Keap1-ARE Signaling Pathway: The Regulation and Dual Function of Nrf2 in Cancer
    Zhang, Donna D.
    ANTIOXIDANTS & REDOX SIGNALING, 2010, 13 (11) : 1623 - 1626
  • [6] Targeting Keap1/Nrf2/ARE signaling pathway in multiple sclerosis
    Michalickova, Danica
    Hrncir, Tomas
    Canova, Nikolina Kutinova
    Slanar, Ondrej
    EUROPEAN JOURNAL OF PHARMACOLOGY, 2020, 873
  • [7] Keap1-Nrf2 signaling pathway in angiogenesis and vascular diseases
    Guo, Zi
    Mo, Zhaohui
    JOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, 2020, 14 (06) : 869 - 883
  • [8] Molecular and Chemical Regulation of the Keap1-Nrf2 Signaling Pathway
    Keum, Young-Sam
    Choi, Bu Young
    MOLECULES, 2014, 19 (07) : 10074 - 10089
  • [9] Targeting the cell signaling pathway Keap1-Nrf2 as a therapeutic strategy for adenocarcinomas of the lung
    Zhang, Bo
    Ma, Zhiyuan
    Tan, Biqin
    Lin, Nengming
    EXPERT OPINION ON THERAPEUTIC TARGETS, 2019, 23 (03) : 241 - 250
  • [10] TARGETING THE Keap1/Nrf2 PATHWAY FOR CHEMOPROTECTION
    Dinkova-Kostova, Albena
    FREE RADICAL BIOLOGY AND MEDICINE, 2014, 76 : S5 - S5