In-orbit detection of the spectral smile for the Mars Mineral Spectrometer

被引:0
作者
Wu, Bing [1 ,2 ]
Xu, Rui [1 ]
Liu, Chengyu [1 ]
He, Zhiping [1 ]
机构
[1] Chinese Acad Sci, Key Lab Space Act Optoelect Technol, Shanghai Inst Tech Phys, Shanghai 200083, Peoples R China
[2] East China Normal Univ, Shanghai Key Lab Multidimens Informat Proc, Shanghai 200241, Peoples R China
基金
中国国家自然科学基金;
关键词
Central wavelength shift; FWHM variation; Hyperspectral; MMS; Spectral smile; CALIBRATION; MISSION;
D O I
10.1016/j.isprsjprs.2024.07.023
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
As a payload of Tianwen-1 (TW-1), the Mars Mineral Spectrometer (MMS) is tasked with acquiring hyperspectral data of the Martian surface to detect material composition. Microdeformations in optical, mechanical, and thermal components result in the MMS experiencing spectral response distortion in orbit, leading to systematic changes in pixel central wavelengths and full width at half maximum (FWHM). Known as the spectral smile, this distortion compromises the accuracy of reflectance inversion and material composition detection. This study introduces a method for detecting the spectral smile through the Martian atmospheric absorption channel, capitalizing on the distinct characteristics of the atmospheric composition and absorption patterns of Mars. A suitable technical route for in-orbit spectral smile detection was established and tested using simulation experiments and MMS-acquired hyperspectral data. Results suggest that the proposed method can attain central wavelength shifts with a maximum error of 0.32 nm and FWHM variations with a maximum error of 1.95 nm. Employing in-orbit spectral smile detection markedly enhances the correction of Martian atmospheric absorption and provides technical support for Martian surface reflectance inversion. https://github.com/wubingnote/ MMS-Spectral-Smile.
引用
收藏
页码:32 / 44
页数:13
相关论文
共 31 条
[1]  
Barry PS, 2001, INT GEOSCI REMOTE SE, P2535, DOI 10.1109/IGARSS.2001.978081
[2]   Toward scene-based retrieval of spectral response functions for hyperspectral imagers using Fraunhofer features [J].
Brazile, Jason ;
Neville, Robert A. ;
Staenz, Karl ;
Schlaepfer, Daniel ;
Sun, Lixin ;
Itten, Klaus I. .
CANADIAN JOURNAL OF REMOTE SENSING, 2008, 34 :S43-S58
[3]  
Ceamanos X., 2010, P 2010 2 WORKSH HYP, P1
[4]   Spectral Smile Correction of CRISM/MRO Hyperspectral Images [J].
Ceamanos, Xavier ;
Doute, Sylvain .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (11) :3951-3959
[5]  
Chen H., 2013, Acta Opt. Sin., V33, P287, DOI [10.3788/AOS201333.0528003, DOI 10.3788/AOS201333.0528003]
[6]  
Chunlai LI, 2018, 深空探测学报(中英文), V5, P406, DOI [10.15982/j.issn.2095-7777.2018.05.002, 10.15982/j.issn.2095, DOI 10.15982/J.ISSN.2095-, 10.15982/j.issn.2095-7777.2018.05.002, DOI 10.15982/J.ISSN.2095-7777.2018.05.002]
[7]   Use of Derivative Calculations and Minimum Noise Fraction Transform for Detecting and Correcting the Spectral Curvature Effect (Smile) in Hyperion Images [J].
Dadon, Alon ;
Ben-Dor, Eyal ;
Karnieli, Arnon .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (06) :2603-2612
[8]   MERIS in-flight spectral calibration [J].
Delwart, S. ;
Preusker, R. ;
Bourg, L. ;
Santer, R. ;
Ramon, D. ;
Fischer, J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2007, 28 (3-4) :479-496
[9]  
Felde GW, 2003, INT GEOSCI REMOTE SE, P90
[10]  
Gao B.C., 2002, P 11 JPL AIRB EARTH, P424