Metal-organic framework derived heterostructured phosphide bifunctional electrocatalyst for efficient overall water splitting

被引:8
作者
Deng, Shu-Qi [1 ]
Pei, Mao-Jun [2 ]
Zhao, Zi-Han [2 ]
Wang, Kaili [2 ]
Zheng, Hui [1 ]
Zheng, Sheng-Run [3 ]
Yan, Wei [2 ]
Zhang, Jiujun [1 ,2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Fuzhou Univ, Sch Mat Sci & Engn, Fuzhou 350108, Peoples R China
[3] South China Normal Univ, Sch Chem, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Metal-Organic Frameworks (MOFs); Heterojunction Interface; Bifunctional Catalysts; Water Splitting; Hydrogen Evolution Reaction (HER); Oxygen Evolution Reaction (OER); X-RAY PHOTOELECTRON; HYDROGEN EVOLUTION; INTERFACES; CATALYSTS; NICKEL; ARRAYS; OXIDES;
D O I
10.1016/j.jcis.2024.07.179
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing high active and stable cost-effective bifunctional electrocatalysts for overall water splitting to produce hydrogen is of vital significance in clean and sustainable energy development. This work has prepared a novel porous unreported MOF (Ni-DPT) as a precursor to successfully synthesize a non-noble bifunctional NiCoP/ Ni12P5@NF 12 P 5 @NF electrocatalyst through doping strategy and interface engineering. This catalyst is constructed by layered self-supporting arrays with heterojunction interface and rich nitrogen-phosphorus doping. Structural characterizations and the density function theory (DFT) calculations confirm that the interface effect of NiCoP/ Ni12P5 12 P 5 heterojunction can regulate the electronic structure of the catalyst to optimize the Gibbs free energy of hydrogen (Delta GH*); Delta G H* ); simultaneously, the defect-rich layered nanoarrays can expose more active sites, shorten mass transfer distance, and generate a self-supporting structure for in-situ reinforcing the structural stability. As a result, this NiCoP/Ni12P5@NF 12 P 5 @NF catalyst exhibits favorable electrocatalytic performance, which simply needs overpotentials of 100 mV for HER and 310 mV for OER, respectively, at a current density of 10 mA & sdot;cm-2. & sdot; cm- 2 . The anion exchange membrane electrolyzer assembled with this NiCoP/Ni12P5@NF 12 P 5 @NF as both anode and cathode catalysts can operate stably for 200 hat a current density of 100 mA & sdot;cm- & sdot; cm- 2 with an insignificant voltage decrease. This work may provide some inspiration for the further rational design of inexpensive non-noble multifunctional electrocatalysts and electrode materials for water splitting to generate hydrogen.
引用
收藏
页码:884 / 895
页数:12
相关论文
共 69 条
[1]   Innovative Strategies for Overall Water Splitting Using Nanostructured Transition Metal Electrocatalysts [J].
Ali, Asad ;
Long, Fei ;
Shen, Pei Kang .
ELECTROCHEMICAL ENERGY REVIEWS, 2022, 5 (04)
[2]   Progress in 3D-MXene Electrodes for Lithium/Sodium/Potassium/Magnesium/Zinc/Aluminum-Ion Batteries [J].
Bashir, Tariq ;
Zhou, Shaowen ;
Yang, Shiqi ;
Ismail, Sara Adeeba ;
Ali, Tariq ;
Wang, Hao ;
Zhao, Jianqing ;
Gao, Lijun .
ELECTROCHEMICAL ENERGY REVIEWS, 2023, 6 (01)
[3]   Environmental Transmission Electron Microscopy Study of the Origins of Anomalous Particle Size Distributions in Supported Metal Catalysts [J].
Benavidez, Angelica D. ;
Kovarik, Libor ;
Genc, Arda ;
Agrawal, Nitin ;
Larsson, Elin M. ;
Hansen, Thomas W. ;
Karim, Ayman M. ;
Datye, Abhaya K. .
ACS CATALYSIS, 2012, 2 (11) :2349-2356
[4]   X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Lau, Leo W. M. ;
Gerson, Andrea ;
Smart, Roger St. C. .
SURFACE AND INTERFACE ANALYSIS, 2009, 41 (04) :324-332
[5]   Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution [J].
Cai, Chao ;
Liu, Kang ;
Zhu, Yuanmin ;
Li, Pengcheng ;
Wang, Qiyou ;
Liu, Bao ;
Chen, Shanyong ;
Li, Huangjingwei ;
Zhu, Li ;
Li, Hongmei ;
Fu, Junwei ;
Chen, Yu ;
Pensa, Evangelina ;
Hu, Junhua ;
Lu, Ying-Rui ;
Chan, Ting-Shan ;
Cortes, Emiliano ;
Liu, Min .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (04)
[6]   Metal-organic frameworks derived transition metal phosphides for electrocatalytic water splitting [J].
Cao, Li-Ming ;
Zhang, Jia ;
Ding, Li-Wen ;
Du, Zi-Yi ;
He, Chun-Ting .
JOURNAL OF ENERGY CHEMISTRY, 2022, 68 :494-520
[7]   Enabling Iron-Based Highly Effective Electrochemical Water-Splitting and Selective Oxygenation of Organic Substrates through In Situ Surface Modification of Intermetallic Iron Stannide Precatalyst [J].
Chakraborty, Biswarup ;
Beltran-Suito, Rodrigo ;
Hausmann, J. Niklas ;
Garai, Somenath ;
Driess, Matthias ;
Menezes, Prashanth W. .
ADVANCED ENERGY MATERIALS, 2020, 10 (30)
[8]   Water electrolysis: from textbook knowledge to the latest scientific strategies and industrial developments [J].
Chatenet, Marian ;
Pollet, Bruno G. ;
Dekel, Dario R. ;
Dionigi, Fabio ;
Deseure, Jonathan ;
Millet, Pierre ;
Braatz, Richard D. ;
Bazant, Martin Z. ;
Eikerling, Michael ;
Staffell, Iain ;
Balcombe, Paul ;
Shao-Horn, Yang ;
Schaefer, Helmut .
CHEMICAL SOCIETY REVIEWS, 2022, 51 (11) :4583-4762
[9]   MOF-derived NiCoZnP nanoclusters anchored on hierarchical N-doped carbon nanosheets array as bifunctional electrocatalysts for overall water splitting [J].
Chen, Bin ;
Kim, Dokyoung ;
Zhang, Zhuo ;
Lee, Minseok ;
Yong, Kijung .
CHEMICAL ENGINEERING JOURNAL, 2021, 422
[10]   Bimetallic AgNi nanoparticles anchored onto MOF-derived nitrogen-doped carbon nanostrips for efficient hydrogen evolution [J].
Chen, Dandan ;
Han, Cheng ;
Sun, Qiuhong ;
Ding, Junyang ;
Huang, Qi ;
Li, Ting -Ting ;
Hu, Yue ;
Qian, Jinjie ;
Huang, Shaoming .
GREEN ENERGY & ENVIRONMENT, 2023, 8 (01) :258-266