Comprehensive physiology and proteomics analysis revealed the resistance mechanism of rice (Oryza sativa L) to cadmium stress

被引:4
|
作者
Zhu, Sixi [1 ,2 ]
Sun, Suxia [1 ,2 ]
Zhao, Wei [1 ,2 ]
Yang, Xiuqin [1 ,2 ]
Chen, Zhongbing [3 ]
Mao, Huan [1 ,2 ]
Sheng, Luying [1 ,2 ]
机构
[1] Guizhou Minzu Univ, Coll Ecoenvironm Engn, Guiyang 550025, Peoples R China
[2] Karst Environm Geol Hazard Prevent Key Lab State E, Guiyang 550025, Peoples R China
[3] Czech Univ Life Sci Prague, Fac Environm Sci, Dept Appl Ecol, Kamycka 129, Prague 16500, Czech Republic
基金
中国国家自然科学基金;
关键词
Cd contamination; Oryza sativa; Proteome; Antioxidation; Energy metabolism; STATE TRANSITIONS; PHOTOSYSTEM-II; SOIL; TOLERANCE; TRANSPORT; TOXICITY; PHOTOSYNTHESIS; ACCUMULATION; PROTEINS; PLANTS;
D O I
10.1016/j.ecoenv.2024.116413
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Cadmium contamination can lead to a decrease in crop yield and quality. However, Cd-tolerant rice can improve rice resistance genes, improve crop tolerance to heavy metals, and protect plants from oxidative damage. In this study, Japonica rice: Chunyou 987 and Indica rice: Chuanzhong you 3607 were used to reveal the molecular response mechanism of Cd-tolerant rice under cadmium concentration of 3 mg/kg through comparative experiments combined with physiology and proteomics. The results showed that compared with indica rice, japonica rice showed more robust resistance to Cd stress and effectively retained many Cd ions in roots. Moreover, it enhanced its enzymatic and non -enzymatic anti -oxidative stress mechanism, which increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 47.37%, 21.75%, and 55.42%, respectively. The contents of non -enzymatic antioxidant substances ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), proline (PRO), anthocyanins (OPC), and flavonoids were increased by 25.32%, 42.67%, 21.43%, 50.81%, 33.23%, and 72.16%, respectively. Through proteomics analysis, it was found that in response to the damage caused by cadmium stress, Japonica rice makes Photosynthesis functional proteins (psbO and PetH), Photosynthesis antenna proteins (LHCA and ASCAB9), Carbon fixation functional proteins (PEPC and OsAld), Porphyrin metabolism functional proteins (OsRCCR1 and SE5), Glyoxylate and dicarboxylate The expression of metabolism functional proteins (CATC and GLO4.) and Glutathione metabolism functional proteins (APX8 and OsGSTU13) were significantly up -regulated, which stimulated the antioxidant stress mechanism and photosynthetic system, and constructed a robust energy supply system to ensure the normal metabolic activities of life. Strengthening the mechanisms of plant homeostasis. In summary, this study revealed the molecular mechanism of tolerance to Cd stress in japonica rice, and the results of this study will provide a possible way to improve Cd-resistant rice seedlings.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Comparative Metabolomics Combined with Physiological Analysis Revealed Cadmium Tolerance Mechanism in Indica Rice (Oryza sativa L.)
    Chang, Weixia
    Wang, Wei
    Shi, Zhangsheng
    Cao, Guodong
    Zhao, Xingchen
    Su, Xiuli
    Chen, Yi
    Wu, Jiabin
    Yang, Zhu
    Liu, Chaolei
    Shang, Lianguang
    Cai, Zongwei
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2023, 71 (20) : 7669 - 7678
  • [2] Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress
    Sun, Lijuan
    Wang, Jun
    Song, Ke
    Sun, Yafei
    Qin, Qin
    Xue, Yong
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [3] Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress
    Lijuan Sun
    Jun Wang
    Ke Song
    Yafei Sun
    Qin Qin
    Yong Xue
    Scientific Reports, 9
  • [4] Comprehensive phenotypic analysis of rice (Oryza sativa) response to salinity stress
    Pires, Ines S.
    Negrao, Snia
    Margarida Oliveira, M.
    Purugganan, Michael D.
    PHYSIOLOGIA PLANTARUM, 2015, 155 (01) : 43 - 54
  • [5] Research Advances in Cadmium Uptake, Transport and Resistance in Rice (Oryza sativa L.)
    Zhang, Jialiang
    Zhu, Yanchun
    Yu, Lijuan
    Yang, Meng
    Zou, Xiao
    Yin, Changxi
    Lin, Yongjun
    CELLS, 2022, 11 (03)
  • [6] Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.)
    Xie, Pan-pan
    Deng, Juan-wei
    Zhang, Hui-min
    Ma, You-hua
    Cao, De-ju
    Ma, Ru-xiao
    Liu, Ren-jing
    Liu, Cheng
    Liang, Yue-gan
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2015, 122 : 392 - 398
  • [7] Silicon-induced cadmium resistance in rice (Oryza sativa)
    Nwugo, Chika C.
    Huerta, Alfredo J.
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2008, 171 (06) : 841 - 848
  • [8] QTL Analysis of Aluminum Resistance in Rice (Oryza sativa L.)
    Y. Xue
    J. M. Wan
    L. Jiang
    L. L. Liu
    N. Su
    H. Q. Zhai
    J. F. Ma
    Plant and Soil, 2006, 287 : 375 - 383
  • [9] QTL analysis of aluminum resistance in rice (Oryza sativa L.)
    Xue, Y.
    Wan, J. M.
    Jiang, L.
    Liu, L. L.
    Su, N.
    Zhai, H. Q.
    Ma, J. F.
    PLANT AND SOIL, 2006, 287 (1-2) : 375 - 383