Variational Autoencoder for Channel Estimation: Real-World Measurement Insights

被引:3
作者
Baur, Michael [1 ]
Boeck, Benedikt [1 ]
Turan, Nurettin [1 ]
Utschick, Wolfgang [1 ]
机构
[1] Tech Univ Munich, TUM Sch Computat Informat & Technol, Munich, Germany
来源
27TH INTERNATIONAL WORKSHOP ON SMART ANTENNAS, WSA 2024 | 2024年
关键词
Channel estimation; measurement data; deep neural network; generative model; variational autoencoder; MODEL;
D O I
10.1109/WSA61681.2024.10512030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work utilizes a variational autoencoder for channel estimation and evaluates it on real-world measurements. The estimator is trained solely on noisy channel observations and parameterizes an approximation to the mean squared error-optimal estimator by learning observation-dependent conditional first and second moments. The proposed estimator significantly outperforms related state-of-the-art estimators on real-world measurements. We investigate the effect of pre-training with synthetic data and find that the proposed estimator exhibits comparable results to the related estimators if trained on synthetic data and evaluated on the measurement data. Furthermore, pre-training on synthetic data also helps to reduce the required measurement training dataset size.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 25 条
[11]  
Hellings C., 2019, 2019 23 INT ITG WORK, P164
[12]   QuaDRiGa: A 3-D Multi-Cell Channel Model With Time Evolution for Enabling Virtual Field Trials [J].
Jaeckel, Stephan ;
Raschkowski, Leszek ;
Boerner, Kai ;
Thiele, Lars .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (06) :3242-3256
[13]  
KAY S. M., 1993, Fundamentals of Statistical Signal Processing: Estimation Theory
[14]  
King DB, 2015, ACS SYM SER, V1214, P1, DOI 10.1021/bk-2015-1214.ch001
[15]   An Introduction to Variational Autoencoders [J].
Kingma, Diederik P. ;
Welling, Max .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2019, 12 (04) :4-89
[16]   Learning the MMSE Channel Estimator [J].
Neumann, David ;
Wiese, Thomas ;
Utschick, Wolfgang .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (11) :2905-2917
[17]   An introduction to deep generative modeling [J].
Ruthotto L. ;
Haber E. .
GAMM Mitteilungen, 2021, 44 (02)
[18]   Model-Based Deep Learning [J].
Shlezinger, Nir ;
Whang, Jay ;
Eldar, Yonina C. ;
Dimakis, Alexandros G. .
PROCEEDINGS OF THE IEEE, 2023, 111 (05) :465-499
[19]   Deep Learning-Based Channel Estimation [J].
Soltani, Mehran ;
Pourahmadi, Vahid ;
Mirzaei, Ali ;
Sheikhzadeh, Hamid .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (04) :652-655
[20]  
STRANG G, 1986, STUD APPL MATH, V74, P171