Variational Autoencoder for Channel Estimation: Real-World Measurement Insights

被引:1
作者
Baur, Michael [1 ]
Boeck, Benedikt [1 ]
Turan, Nurettin [1 ]
Utschick, Wolfgang [1 ]
机构
[1] Tech Univ Munich, TUM Sch Computat Informat & Technol, Munich, Germany
来源
27TH INTERNATIONAL WORKSHOP ON SMART ANTENNAS, WSA 2024 | 2024年
关键词
Channel estimation; measurement data; deep neural network; generative model; variational autoencoder; MODEL;
D O I
10.1109/WSA61681.2024.10512030
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work utilizes a variational autoencoder for channel estimation and evaluates it on real-world measurements. The estimator is trained solely on noisy channel observations and parameterizes an approximation to the mean squared error-optimal estimator by learning observation-dependent conditional first and second moments. The proposed estimator significantly outperforms related state-of-the-art estimators on real-world measurements. We investigate the effect of pre-training with synthetic data and find that the proposed estimator exhibits comparable results to the related estimators if trained on synthetic data and evaluated on the measurement data. Furthermore, pre-training on synthetic data also helps to reduce the required measurement training dataset size.
引用
收藏
页码:117 / 122
页数:6
相关论文
共 25 条
  • [1] Wideband Channel Estimation With a Generative Adversarial Network
    Balevi, Eren
    Andrews, Jeffrey G.
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (05) : 3049 - 3060
  • [2] Baur M, 2024, Arxiv, DOI arXiv:2309.08411
  • [3] Baur M, 2024, Arxiv, DOI arXiv:2307.05352
  • [4] Variational Autoencoder Leveraged MMSE Channel Estimation
    Baur, Michael
    Fesl, Benedikt
    Koller, Michael
    Utschick, Wolfgang
    [J]. 2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 527 - 532
  • [5] Bock B., 2023, 2023 IEEE INT C AC S, P1
  • [6] One-Bit mmWave MIMO Channel Estimation Using Deep Generative Networks
    Doshi A.
    Andrews J.G.
    [J]. IEEE Wireless Communications Letters, 2023, 12 (09) : 1593 - 1597
  • [7] Over-the-Air Design of GAN Training for mmWave MIMO Channel Estimation
    Doshi A.S.
    Gupta M.
    Andrews J.G.
    [J]. IEEE Journal on Selected Areas in Information Theory, 2022, 3 (03): : 557 - 573
  • [8] Generative Adversarial Networks
    Goodfellow, Ian
    Pouget-Abadie, Jean
    Mirza, Mehdi
    Xu, Bing
    Warde-Farley, David
    Ozair, Sherjil
    Courville, Aaron
    Bengio, Yoshua
    [J]. COMMUNICATIONS OF THE ACM, 2020, 63 (11) : 139 - 144
  • [9] Deep Learning-Based Channel Estimation for Beamspace mmWave Massive MIMO Systems
    He, Hengtao
    Wen, Chao-Kai
    Jin, Shi
    Li, Geoffrey Ye
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2018, 7 (05) : 852 - 855
  • [10] Hellings C., 2019, 2019 23 INT ITG WORK, P164