Weak Galerkin methods for elliptic interface problems on curved polygonal partitions

被引:3
作者
Li, Dan [1 ]
Wang, Chunmei [2 ]
Zhang, Shangyou [3 ]
机构
[1] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Peoples R China
[2] Univ Florida, Dept Math, Gainesville, FL 32611 USA
[3] Univ Delaware, Dept Math Sci, Newark, DE 19716 USA
基金
美国国家科学基金会; 中国国家自然科学基金; 中国博士后科学基金;
关键词
Weak Galerkin; Finite element methods; Elliptic interface problems; Weak gradient; Polygonal partitions; Curved elements; FINITE-ELEMENT-METHOD; MATCHED INTERFACE; EQUATIONS; CONVERGENCE;
D O I
10.1016/j.cam.2024.115995
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper presents a new weak Galerkin (WG) method for elliptic interface problems on general curved polygonal partitions. The method's key innovation lies in its ability to transform the complex interface jump condition into a more manageable Dirichlet boundary condition, simplifying the theoretical analysis significantly. The numerical scheme is designed by using locally constructed weak gradient on the curved polygonal partitions. We establish error estimates of optimal order for the numerical approximation in both discrete H-1 and H-2 norms. Additionally, we present various numerical results that serve to illustrate the robust numerical performance of the proposed WG interface method.
引用
收藏
页数:15
相关论文
共 42 条
[1]   CutFEM: Discretizing geometry and partial differential equations [J].
Burman, Erik ;
Claus, Susanne ;
Hansbo, Peter ;
Larson, Mats G. ;
Massing, Andre .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2015, 104 (07) :472-501
[2]   An extended mixed finite element method for elliptic interface problems [J].
Can, Pei ;
Chen, Jinru ;
Wang, Feng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 113 :148-159
[3]   Immersed Virtual Element Methods for Elliptic Interface Problems in Two Dimensions [J].
Cao, Shuhao ;
Chen, Long ;
Guo, Ruchi ;
Lin, Frank .
JOURNAL OF SCIENTIFIC COMPUTING, 2022, 93 (01)
[4]   A new numerical method for div-curl systems with low regularity assumptions [J].
Cao, Shuhao ;
Wang, Chunmei ;
Wang, Junping .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 114 :47-59
[5]   A new primal-dual weak Galerkin method for elliptic interface problems with low regularity assumptions [J].
Cao, Waixiang ;
Wang, Chunmei ;
Wang, Junping .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 470
[6]   An Lp- primal-dual weak Galerkin method for convection-diffusion equations [J].
Cao, Waixiang ;
Wang, Chunmei ;
Wang, Junping .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2023, 419
[7]   Software News and Update MIBPB: A Software Package for Electrostatic Analysis [J].
Chen, Duan ;
Chen, Zhan ;
Chen, Changjun ;
Geng, Weihua ;
Wei, Guo-Wei .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (04) :756-770
[8]   An interface-fitted mesh generator and virtual element methods for elliptic interface problems [J].
Chen, Long ;
Wei, Huayi ;
Wen, Min .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 334 :327-348
[9]   A NEW MULTISCALE FINITE ELEMENT METHOD FOR HIGH-CONTRAST ELLIPTIC INTERFACE PROBLEMS [J].
Chu, C-C. ;
Graham, I. G. ;
Hou, T-Y. .
MATHEMATICS OF COMPUTATION, 2010, 79 (272) :1915-1955
[10]   THE VIRTUAL ELEMENT METHOD WITH CURVED EDGES [J].
da Veiga, L. Beirao ;
Russo, A. ;
Vacca, G. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2019, 53 (02) :375-404