Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions

被引:6
作者
Zahmatkeshsaredorahi, Amirhossein [1 ]
Jakob, Devon S. [1 ]
Xu, Xiaoji G. [1 ]
机构
[1] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
CONTACT POTENTIAL DIFFERENCE; WORK FUNCTION; SOLAR-CELLS; SURFACE; ORIENTATION; MODULATION; DEFECTS; MODE;
D O I
10.1021/acs.jpcc.4c01461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kelvin probe force microscopy (KPFM) is an increasingly popular scanning probe microscopy technique used for nanoscale imaging of surface potential for various materials, such as metals, semiconductors, biological samples, and photovoltaics, to reveal their surface work function and/or local accumulation of charges. This featured review outlines the operation principles and applications of KPFM, including several typical commercially available variants. We highlight the significance of surface potential measurements, present the details of the method operation, and discuss the causes of the limitation on spatial resolution. Then, we present the pulsed force Kelvin probe force microscopy (PF-KPFM) as an innovative improvement to KPFM, which provides an enhanced spatial resolution of <10 nm under ambient conditions. PF-KPFM is promising for the characterization of heterogeneous materials with spatial variations of electrical properties. It will be especially instrumental for investigating emerging perovskite photovoltaics, heterogeneous catalysts, 2D materials, and ferroelectric materials, among others.
引用
收藏
页码:9813 / 9827
页数:15
相关论文
共 50 条
[41]   The interlayer screening effect of graphene sheets investigated by Kelvin probe force microscopy [J].
Lee, N. J. ;
Yoo, J. W. ;
Choi, Y. J. ;
Kang, C. J. ;
Jeon, D. Y. ;
Kim, D. C. ;
Seo, S. ;
Chung, H. J. .
APPLIED PHYSICS LETTERS, 2009, 95 (22)
[42]   Measurements of Electric Potential in GaAs Detectors Using Kelvin Probe Force Microscopy [J].
Kaztaev, O. G. ;
Novikov, V. A. ;
Ponomarev, I. V. .
SIBCON-2009: INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS, 2009, :166-169
[43]   Band profiles of ZnMgO/ZnO heterostructures confirmed by Kelvin probe force microscopy [J].
Tampo, H. ;
Shibata, H. ;
Maejima, K. ;
Chiu, T. -W. ;
Itoh, H. ;
Yamada, A. ;
Matsubara, K. ;
Fons, P. ;
Chiba, Y. ;
Wakamatsu, T. ;
Takeshita, Y. ;
Kanie, H. ;
Niki, S. .
APPLIED PHYSICS LETTERS, 2009, 94 (24)
[44]   On the Origin of Extended Resolution in Kelvin Probe Force Microscopy with a Worn Tip Apex [J].
Luchkin, Sergey Y. ;
Stevenson, Keith J. .
MICROSCOPY AND MICROANALYSIS, 2018, 24 (02) :126-131
[45]   Raman Spectroscopy and Kelvin Probe Force Microscopy characteristics of the CVD suspended graphene [J].
Gajewski, Krzysztof ;
Goniszewski, Stefan ;
Szumska, Anna ;
Moczala, Magdalena ;
Kunicki, Piotr ;
Gallop, John ;
Klein, Norbert ;
Hao, Ling ;
Gotszalk, Teodor .
DIAMOND AND RELATED MATERIALS, 2016, 64 :27-33
[46]   Insight into Al-Si interface of PERC by Kelvin probe force microscopy [J].
Wang, Xingbo ;
Qian, Guoyu ;
Gao, Zhou ;
Jiang, Xing ;
Chen, Yongji ;
Liu, Jian ;
Lin, Yuan ;
Pan, Feng .
FUNCTIONAL MATERIALS LETTERS, 2019, 12 (05)
[47]   Work function measurement of multilayer electrodes using Kelvin probe force microscopy [J].
Peres, L. ;
Bou, A. ;
Cornille, C. ;
Barakel, D. ;
Torchio, P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (13)
[48]   Resonant multi-frequency method for Kelvin probe force microscopy in air [J].
Ding, X. D. ;
Li, C. ;
Liang, Z. W. ;
Lin, G. C. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2012, 23 (10)
[49]   Simulation method of Kelvin probe force microscopy at nanometer range and its application [J].
Masago, A. ;
Tsukada, M. ;
Shimizu, M. .
PHYSICAL REVIEW B, 2010, 82 (19)
[50]   Resolution of Kelvin probe force microscopy in ultrahigh vacuum: comparison of experiment and simulation [J].
Sadewasser, S ;
Glatzel, T ;
Shikler, R ;
Rosenwaks, Y ;
Lux-Steiner, MC .
APPLIED SURFACE SCIENCE, 2003, 210 (1-2) :32-36