Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions

被引:6
作者
Zahmatkeshsaredorahi, Amirhossein [1 ]
Jakob, Devon S. [1 ]
Xu, Xiaoji G. [1 ]
机构
[1] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA
基金
美国国家科学基金会;
关键词
CONTACT POTENTIAL DIFFERENCE; WORK FUNCTION; SOLAR-CELLS; SURFACE; ORIENTATION; MODULATION; DEFECTS; MODE;
D O I
10.1021/acs.jpcc.4c01461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kelvin probe force microscopy (KPFM) is an increasingly popular scanning probe microscopy technique used for nanoscale imaging of surface potential for various materials, such as metals, semiconductors, biological samples, and photovoltaics, to reveal their surface work function and/or local accumulation of charges. This featured review outlines the operation principles and applications of KPFM, including several typical commercially available variants. We highlight the significance of surface potential measurements, present the details of the method operation, and discuss the causes of the limitation on spatial resolution. Then, we present the pulsed force Kelvin probe force microscopy (PF-KPFM) as an innovative improvement to KPFM, which provides an enhanced spatial resolution of <10 nm under ambient conditions. PF-KPFM is promising for the characterization of heterogeneous materials with spatial variations of electrical properties. It will be especially instrumental for investigating emerging perovskite photovoltaics, heterogeneous catalysts, 2D materials, and ferroelectric materials, among others.
引用
收藏
页码:9813 / 9827
页数:15
相关论文
共 50 条
[21]   Characterizing defects and transport in Si nanowire devices using Kelvin probe force microscopy [J].
Bae, S-S ;
Prokopuk, N. ;
Quitoriano, N. J. ;
Adams, S. M. ;
Ragan, R. .
NANOTECHNOLOGY, 2012, 23 (40)
[22]   Quantitative Kelvin probe force microscopy of current-carrying devices [J].
Fuller, Elliot J. ;
Pan, Deng ;
Corso, Brad L. ;
Gul, O. Tolga ;
Gomez, Jose R. ;
Collins, Philip G. .
APPLIED PHYSICS LETTERS, 2013, 102 (08)
[23]   Observing Ion Motion in Conjugated Polyelectrolytes with Kelvin Probe Force Microscopy [J].
Collins, Samuel D. ;
Mikhnenko, Oleksandr V. ;
Thanh Luan Nguyen ;
Rengert, Zachary D. ;
Bazan, Guillermo C. ;
Woo, Han Young ;
Thuc-Quyen Nguyen .
ADVANCED ELECTRONIC MATERIALS, 2017, 3 (03)
[24]   DNA Immobilization on GaP(100) Investigated by Kelvin Probe Force Microscopy [J].
Richards, David N. ;
Zemlyanov, Dmitry Y. ;
Asrar, Rafay M. ;
Chokshi, Yena Y. ;
Cook, Emily M. ;
Hinton, Thomas J. ;
Lu, Xinran ;
Nguyen, Viet Q. ;
Patel, Neil K. ;
Usher, Jonathan R. ;
Vaidyanathan, Sriram ;
Yeung, David A. ;
Ivanisevic, Albena .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (36) :15486-15490
[25]   Kelvin probe force microscopy for local characterisation of active nanoelectronic devices [J].
Wagner, Tino ;
Beyer, Hannes ;
Reissner, Patrick ;
Mensch, Philipp ;
Riel, Heike ;
Gotsmann, Bernd ;
Stemmer, Andreas .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2015, 6 :2193-2206
[26]   Understanding the Atomic-Scale Contrast in Kelvin Probe Force Microscopy [J].
Nony, Laurent ;
Foster, Adam S. ;
Bocquet, Franck ;
Loppacher, Christian .
PHYSICAL REVIEW LETTERS, 2009, 103 (03)
[27]   Investigation of hydrogen evolution and enrichment by scanning Kelvin probe force microscopy [J].
Wang, Gang ;
Yan, Yu ;
Yang, Xina ;
Li, Jinxu ;
Qiao, Lijie .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 35 :100-103
[28]   Toward quantitative Kelvin probe force microscopy of nanoscale potential distributions [J].
Baier, Robert ;
Leendertz, Caspar ;
Lux-Steiner, Martha Ch. ;
Sadewasser, Sascha .
PHYSICAL REVIEW B, 2012, 85 (16)
[29]   IMAGING HYDROGEN IN STAINLESS STEEL ALLOYS BY KELVIN PROBE FORCE MICROSCOPY [J].
McNamara, J. D. ;
Morgan, M. J. ;
Duncan, A. J. ;
Korinko, P. S. .
PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018, VOL 6B, 2019,
[30]   Amplitude or frequency modulation-detection in Kelvin probe force microscopy [J].
Glatzel, T ;
Sadewasser, S ;
Lux-Steiner, MC .
APPLIED SURFACE SCIENCE, 2003, 210 (1-2) :84-89