Pulsed Force Kelvin Probe Force Microscopy-A New Type of Kelvin Probe Force Microscopy under Ambient Conditions

被引:4
|
作者
Zahmatkeshsaredorahi, Amirhossein [1 ]
Jakob, Devon S. [1 ]
Xu, Xiaoji G. [1 ]
机构
[1] Lehigh Univ, Dept Chem, Bethlehem, PA 18015 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2024年 / 128卷 / 24期
基金
美国国家科学基金会;
关键词
CONTACT POTENTIAL DIFFERENCE; WORK FUNCTION; SOLAR-CELLS; SURFACE; ORIENTATION; MODULATION; DEFECTS; MODE;
D O I
10.1021/acs.jpcc.4c01461
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kelvin probe force microscopy (KPFM) is an increasingly popular scanning probe microscopy technique used for nanoscale imaging of surface potential for various materials, such as metals, semiconductors, biological samples, and photovoltaics, to reveal their surface work function and/or local accumulation of charges. This featured review outlines the operation principles and applications of KPFM, including several typical commercially available variants. We highlight the significance of surface potential measurements, present the details of the method operation, and discuss the causes of the limitation on spatial resolution. Then, we present the pulsed force Kelvin probe force microscopy (PF-KPFM) as an innovative improvement to KPFM, which provides an enhanced spatial resolution of <10 nm under ambient conditions. PF-KPFM is promising for the characterization of heterogeneous materials with spatial variations of electrical properties. It will be especially instrumental for investigating emerging perovskite photovoltaics, heterogeneous catalysts, 2D materials, and ferroelectric materials, among others.
引用
收藏
页码:9813 / 9827
页数:15
相关论文
共 50 条
  • [21] Signal amplitude and sensitivity of the Kelvin probe force microscopy
    Ouisse, T
    Martins, F
    Stark, M
    Huant, S
    Chevrier, J
    APPLIED PHYSICS LETTERS, 2006, 88 (04) : 1 - 3
  • [22] The influence of surface topography on Kelvin probe force microscopy
    Sadewasser, S.
    Leendertz, C.
    Streicher, F.
    Lux-Steiner, M. Ch
    NANOTECHNOLOGY, 2009, 20 (50)
  • [23] Dual-heterodyne Kelvin probe force microscopy
    Grévin B.
    Husainy F.
    Aldakov D.
    Aumaître C.
    Beilstein Journal of Nanotechnology, 2023, 14 : 1068 - 1084
  • [24] The effect of sample resistivity on Kelvin probe force microscopy
    Weymouth, A. J.
    Giessibl, F. J.
    APPLIED PHYSICS LETTERS, 2012, 101 (21)
  • [25] Kelvin probe force microscopy for perovskite solar cells
    Kang, Zhuo
    Si, Haonan
    Shi, Mingyue
    Xu, Chenzhe
    Fan, Wenqiang
    Ma, Shuangfei
    Kausar, Ammarah
    Liao, Qingliang
    Zhang, Zheng
    Zhang, Yue
    SCIENCE CHINA-MATERIALS, 2019, 62 (06) : 776 - 789
  • [26] Three-Dimensional Kelvin Probe Force Microscopy
    Geng, Junyuan
    Zhang, Hao
    Meng, Xianghe
    Gao, Haibo
    Rong, Weibin
    Xie, Hui
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (28) : 32719 - 32728
  • [27] Atomic and Kelvin probe force microscopy of thin films
    Alessandrini, A
    Valdrè, U
    PROCEEDINGS OF THE 5TH MULTINATIONAL CONGRESS ON ELECTRON MICROSCOPY, 2001, : 553 - 554
  • [28] Dual-heterodyne Kelvin probe force microscopy
    Grevin, Benjamin
    Husainy, Fatima
    Aldakov, Dmitry
    Aumaitre, Cyril
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2023, 14 : 1068 - 1084
  • [29] Space Charge Measurements with Kelvin Probe Force Microscopy
    Faliya, Kapil
    Kliem, Herbert
    Dias, Carlos J.
    IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (03) : 1913 - 1922
  • [30] The role of the cantilever in Kelvin probe force microscopy measurements
    Elias, George
    Glatzel, Thilo
    Meyer, Ernst
    Schwarzman, Alex
    Boag, Amir
    Rosenwaks, Yossi
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2011, 2 : 252 - 260