Parallel quantum computing simulations via quantum accelerator platform virtualization

被引:0
作者
Claudino, Daniel [1 ]
Lyakh, Dmitry I. [2 ]
McCaskey, Alexander J. [2 ]
机构
[1] Oak Ridge Natl Lab, Quantum Informat Sci Sect, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] NVIDIA Corp, Santa Clara, CA USA
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2024年 / 160卷
关键词
Quantum computing; Quantum software; Distributed computing;
D O I
10.1016/j.future.2024.06.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum circuit execution is a central task in quantum computation. Due to inherent quantum -mechanical constraints, quantum computing workflows often involve a considerable number of independent measurements over a large set of slightly different quantum circuits. Here we discuss a simple model for parallelizing such quantum circuit executions that is based on introducing a large array of virtual quantum processing units (mapped to HPC nodes in our case) as a parallel quantum computing platform. Implemented within the XACC framework, the model can readily take advantage of its backend-agnostic features, enabling parallel quantum computing/simulation over any target backend supported by XACC. We illustrate the performance of this approach by demonstrating strong scaling in two pertinent domain science problems, namely in computing the gradients for the multi -contracted variational quantum eigensolver and in data -driven quantum circuit learning, where we vary the number of qubits and the number of circuit layers. The latter simulation leverages the cuQuantum library to run efficiently on GPU-accelerated HPC platforms.
引用
收藏
页码:264 / 273
页数:10
相关论文
共 50 条
[31]   Validating quantum-classical programming models with tensor network simulations [J].
McCaskey, Alexander ;
Dumitrescu, Eugene ;
Chen, Mengsu ;
Lyakh, Dmitry ;
Humble, Travis .
PLOS ONE, 2018, 13 (12)
[32]   XACC: a system-level software infrastructure for heterogeneous quantum-classical computing* [J].
McCaskey, Alexander J. ;
Lyakh, Dmitry, I ;
Dumitrescu, Eugene F. ;
Powers, Sarah S. ;
Humble, Travis S. .
QUANTUM SCIENCE AND TECHNOLOGY, 2020, 5 (02)
[33]  
Morita M, 2024, Arxiv, DOI arXiv:2402.11878
[34]   General-purpose parallel simulator for quantum computing [J].
Niwa, J ;
Matsumoto, K ;
Imai, H .
PHYSICAL REVIEW A, 2002, 66 (06) :11
[35]  
NVIDIA, CUDA Quantum: The platform for hybrid quantum-classical computing
[36]   Quantum Computation of Electronic Transitions Using a Variational Quantum Eigensolver [J].
Parrish, Robert M. ;
Hohenstein, Edward G. ;
McMahon, Peter L. ;
Martinez, Todd J. .
PHYSICAL REVIEW LETTERS, 2019, 122 (23)
[37]   Simulating Large Quantum Circuits on a Small Quantum Computer [J].
Peng, Tianyi ;
Harrow, Aram W. ;
Ozols, Maris ;
Wu, Xiaodi .
PHYSICAL REVIEW LETTERS, 2020, 125 (15)
[38]   A variational eigenvalue solver on a photonic quantum processor [J].
Peruzzo, Alberto ;
McClean, Jarrod ;
Shadbolt, Peter ;
Yung, Man-Hong ;
Zhou, Xiao-Qi ;
Love, Peter J. ;
Aspuru-Guzik, Alan ;
O'Brien, Jeremy L. .
NATURE COMMUNICATIONS, 2014, 5
[39]  
Quantum AI team and collaborators, 2021, Zenodo
[40]   Evaluating analytic gradients on quantum hardware [J].
Schuld, Maria ;
Bergholm, Ville ;
Gogolin, Christian ;
Izaac, Josh ;
Killoran, Nathan .
PHYSICAL REVIEW A, 2019, 99 (03)