Parallel quantum computing simulations via quantum accelerator platform virtualization

被引:0
作者
Claudino, Daniel [1 ]
Lyakh, Dmitry I. [2 ]
McCaskey, Alexander J. [2 ]
机构
[1] Oak Ridge Natl Lab, Quantum Informat Sci Sect, 1 Bethel Valley Rd, Oak Ridge, TN 37831 USA
[2] NVIDIA Corp, Santa Clara, CA USA
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2024年 / 160卷
关键词
Quantum computing; Quantum software; Distributed computing;
D O I
10.1016/j.future.2024.06.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum circuit execution is a central task in quantum computation. Due to inherent quantum -mechanical constraints, quantum computing workflows often involve a considerable number of independent measurements over a large set of slightly different quantum circuits. Here we discuss a simple model for parallelizing such quantum circuit executions that is based on introducing a large array of virtual quantum processing units (mapped to HPC nodes in our case) as a parallel quantum computing platform. Implemented within the XACC framework, the model can readily take advantage of its backend-agnostic features, enabling parallel quantum computing/simulation over any target backend supported by XACC. We illustrate the performance of this approach by demonstrating strong scaling in two pertinent domain science problems, namely in computing the gradients for the multi -contracted variational quantum eigensolver and in data -driven quantum circuit learning, where we vary the number of qubits and the number of circuit layers. The latter simulation leverages the cuQuantum library to run efficiently on GPU-accelerated HPC platforms.
引用
收藏
页码:264 / 273
页数:10
相关论文
共 50 条
[1]   Adiabatic Quantum Computation Is Equivalent to Standard Quantum Computation [J].
Aharonov, Dorit ;
van Dam, Wim ;
Kempe, Julia ;
Landau, Zeph ;
Lloyd, Seth ;
Regev, Oded .
SIAM REVIEW, 2008, 50 (04) :755-787
[2]  
Amariutei A., 2011, 15 INT C SYST THEOR, P1
[3]  
Barral D, 2024, Review of distributed quantum computing. From single QPU to high performance quantum computing
[4]  
Bayraktar Harun, 2023, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE), P1050, DOI 10.1109/QCE57702.2023.00119
[5]   Efficient distributed quantum computing [J].
Beals, Robert ;
Brierley, Stephen ;
Gray, Oliver ;
Harrow, Aram W. ;
Kutin, Samuel ;
Linden, Noah ;
Shepherd, Dan ;
Stather, Mark .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2153)
[6]   A generative modeling approach for benchmarking and training shallow quantum circuits [J].
Benedetti, Marcello ;
Garcia-Pintos, Delfina ;
Perdomo, Oscar ;
Leyton-Ortega, Vicente ;
Nam, Yunseong ;
Perdomo-Ortiz, Alejandro .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[7]   Trading Classical and Quantum Computational Resources [J].
Bravyi, Sergey ;
Smith, Graeme ;
Smolin, John A. .
PHYSICAL REVIEW X, 2016, 6 (02)
[8]  
Caleffi M, 2022, Arxiv, DOI arXiv:2212.10609
[9]   Massively parallel quantum computer simulator, eleven years later [J].
De Raedt, Hans ;
Jin, Fengping ;
Willsch, Dennis ;
Willsch, Madita ;
Yoshioka, Naoki ;
Ito, Nobuyasu ;
Yuan, Shengjun ;
Michielsen, Kristel .
COMPUTER PHYSICS COMMUNICATIONS, 2019, 237 :47-61
[10]   Massively parallel quantum computer simulator [J].
De Raedt, K. ;
Michielsen, K. ;
De Raedt, H. ;
Trieu, B. ;
Arnold, G. ;
Richter, M. ;
Lippert, Th. ;
Watanabe, H. ;
Ito, N. .
COMPUTER PHYSICS COMMUNICATIONS, 2007, 176 (02) :121-136