On a Version of Dontchev and Hager's Inverse Mapping Theorem

被引:0
作者
Alarfaj, Thanaa A. [1 ,2 ]
Alsulami, Saud M. [1 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[2] Imam Abdulrahman Bin Faisal Univ, Coll Sci, Dept Math, POB 1982, Dammam 31441, Saudi Arabia
关键词
strong b-metric space (SbMS); Nadler's fixed-point theorem; inverse mapping theorem;
D O I
10.3390/axioms13070445
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By revisiting an open question raised by Kirk and Shahzad, we are able to prove a generalized version of Nadler's fixed-point theorem in the context of strong b-metric space. Such a result leads us to prove a new version of Dontchev and Hager's inverse mapping theorem. Some examples are provided to illustrate the results.
引用
收藏
页数:12
相关论文
共 19 条
  • [1] Bakhtin I. A., 1989, Functional Analysis, V30, P26, DOI DOI 10.1039/AP9892600037
  • [2] Berinde V., 1993, SEMINAR FIXED POINT, P3
  • [3] Bourbaki N., 1974, Topologie Gnrale (General Topology)
  • [4] Czerwik S., 1993, Acta Math. Inform. Univ. Ostrav, V1, P5
  • [5] Czerwik S, 1998, ATTI SEMIN MAT FIS U, V46, P263
  • [6] Research article A new type of Kannan's fixed point theorem in strong b- metric spaces
    Doan, Hieu
    [J]. AIMS MATHEMATICS, 2021, 6 (07): : 7895 - 7908
  • [7] AN INVERSE MAPPING-THEOREM FOR SET-VALUED MAPS
    DONTCHEV, AL
    HAGER, WW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1994, 121 (02) : 481 - 489
  • [8] George R, 2015, J NONLINEAR SCI APPL, V8, P1005
  • [9] Jleli M., 2015, Abstr. Appl. Anal, V2015, P718074, DOI [10.1155/2015/718074, DOI 10.1155/2015/718074]
  • [10] KKM mappings in metric type spaces
    Khamsi, M. A.
    Hussain, N.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (09) : 3123 - 3129