Approximation with fractal radial basis functions

被引:0
|
作者
Kumar, D. [1 ]
Chand, A. K. B. [1 ]
Massopust, P. R. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Tech Univ Munich TUM, Dept Math, D-85748 Munich, Germany
关键词
Fractal interpolation functions; Radial basis functions; Strictly positive definite basis function; Shape-preserving approximations; Scattered interpolations; Box dimension; SCATTERED DATA; INTERPOLATION; RECONSTRUCTION; MULTIQUADRICS; SCHEME;
D O I
10.1016/j.cam.2024.116200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article reports on the construction of a general class of fractal radial basis functions (RBFs) in the literature. The fractal RBFs is defined through fractal perturbation of a RBF through suitable choice of iterated function system (IFS). A fractal RBF may be smooth depending on the choice of the germ function and the IFS parameters. Characterizations of conditionally strictly positive definite and strictly positive definite fractal functions are studied using the definition of k-times monotonicity. Furthermore, error estimates and shape-preserving properties for the approximants Pj j defined through linear combination of cardinal fractal RBFs are investigated. Several examples are presented to illustrate the convergence of the operator Pj j across various parameters, highlighting the advantages of the fractal approximant Pj j over the corresponding classical operator P . Finally, estimates for the box dimension of the graphs of approximants derived from fractal radial basis functions are given.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Numerical Experiments on Optimal Shape Parameters for Radial Basis Functions
    Roque, C. M. C.
    Ferreira, A. J. M.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2010, 26 (03) : 675 - 689
  • [32] New developments in the radial basis functions analysis of composite shells
    Roque, C. M. C.
    Ferreira, A. J. M.
    COMPOSITE STRUCTURES, 2009, 87 (02) : 141 - 150
  • [33] Efficient least squares approximation and collocation methods using radial basis functions
    Zhou, Yiqing
    Huybrechs, Daan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 447
  • [34] An interval for the shape parameter in radial basis function approximation
    Biazar, Jafar
    Hosami, Mohammad
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 315 : 131 - 149
  • [35] Application of radial basis functions neutral networks in spectral functions
    Zhou, Meng
    Gao, Fei
    Chao, Jingyi
    Liu, Yu-Xin
    Song, Huichao
    PHYSICAL REVIEW D, 2021, 104 (07)
  • [36] The use of Radial Basis Functions in Computational Methods
    Rendall, T. C. S.
    Allen, C. B.
    Mackman, T. J.
    PROCEEDINGS OF THE SEVENTH INTERNATIONAL CONFERENCE ON ENGINEERING COMPUTATIONAL TECHNOLOGY, 2010, 94
  • [37] CAD and mesh repair with Radial Basis Functions
    Marchandise, E.
    Piret, C.
    Remacle, J. -F.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2012, 231 (05) : 2376 - 2387
  • [38] Regularizing properties of anisotropic radial basis functions
    Casciola, G.
    Montefusco, L. B.
    Morigi, S.
    APPLIED MATHEMATICS AND COMPUTATION, 2007, 190 (02) : 1050 - 1062
  • [39] Interpolation by polynomials and radial basis functions on spheres
    Golitschek M.V.
    Light W.A.
    Constructive Approximation, 2001, 17 (1) : 1 - 18
  • [40] Interpolation by polynomials and radial basis functions on spheres
    von Golitschek, M
    Light, WA
    CONSTRUCTIVE APPROXIMATION, 2001, 17 (01) : 1 - 18