Approximation with fractal radial basis functions

被引:0
作者
Kumar, D. [1 ]
Chand, A. K. B. [1 ]
Massopust, P. R. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Tech Univ Munich TUM, Dept Math, D-85748 Munich, Germany
关键词
Fractal interpolation functions; Radial basis functions; Strictly positive definite basis function; Shape-preserving approximations; Scattered interpolations; Box dimension; SCATTERED DATA; INTERPOLATION; RECONSTRUCTION; MULTIQUADRICS; SCHEME;
D O I
10.1016/j.cam.2024.116200
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The article reports on the construction of a general class of fractal radial basis functions (RBFs) in the literature. The fractal RBFs is defined through fractal perturbation of a RBF through suitable choice of iterated function system (IFS). A fractal RBF may be smooth depending on the choice of the germ function and the IFS parameters. Characterizations of conditionally strictly positive definite and strictly positive definite fractal functions are studied using the definition of k-times monotonicity. Furthermore, error estimates and shape-preserving properties for the approximants Pj j defined through linear combination of cardinal fractal RBFs are investigated. Several examples are presented to illustrate the convergence of the operator Pj j across various parameters, highlighting the advantages of the fractal approximant Pj j over the corresponding classical operator P . Finally, estimates for the box dimension of the graphs of approximants derived from fractal radial basis functions are given.
引用
收藏
页数:21
相关论文
共 44 条
[1]   BOX DIMENSIONS OF α-FRACTAL FUNCTIONS [J].
Akhtar, Md. Nasim ;
Prasad, M. Guru Prem ;
Navascues, M. A. .
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2016, 24 (03)
[2]   On the reconstruction of discontinuous functions using multiquadric RBF-WENO local interpolation techniques [J].
Arandiga, Francesc ;
Donat, Rosa ;
Romani, Lucia ;
Rossini, Milvia .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 176 (176) :4-24
[3]  
Barnsley M.F., 1993, Fractals Everywhere, Vsecond, P534
[4]   HIDDEN VARIABLE FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
ELTON, J ;
HARDIN, D ;
MASSOPUST, P .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (05) :1218-1242
[5]   FRACTAL FUNCTIONS AND INTERPOLATION [J].
BARNSLEY, MF .
CONSTRUCTIVE APPROXIMATION, 1986, 2 (04) :303-329
[6]   THE CALCULUS OF FRACTAL INTERPOLATION FUNCTIONS [J].
BARNSLEY, MF ;
HARRINGTON, AN .
JOURNAL OF APPROXIMATION THEORY, 1989, 57 (01) :14-34
[7]   How to Transform and Filter Images Using Iterated Function Systems [J].
Barnsley, Michael F. ;
Harding, Brendan ;
Igudesman, Konstantin .
SIAM JOURNAL ON IMAGING SCIENCES, 2011, 4 (04) :1001-1028
[8]  
Buhmann Martin D, 2003, C MO AP C M, V12, DOI 10.1017/CBO9780511543241
[9]   Generalized cubic spline fractal interpolation functions [J].
Chand, A. K. B. ;
Kapoor, G. P. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (02) :655-676
[10]  
Chand AKB., 2023, Numer. Funct. Anal. Optim, V44, P1538, DOI [10.1080/01630563.2023.2265722, DOI 10.1080/01630563.2023.2265722]