Enhancing microbial fuel cell performance through microbial immobilization

被引:0
|
作者
Mersinkova, Yana [1 ]
Yemendzhiev, Hyusein [1 ]
机构
[1] Burgas Prof Dr Asen Zlatarov Univ, Fac Tech Sci, Dept Chem Technol, 1 Y Yakimov Blvd, Burgas 8010, Bulgaria
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION C-A JOURNAL OF BIOSCIENCES | 2024年 / 79卷 / 5-6期
关键词
microbial fuel cell; electrochemically active bacteria; microbial immobilization;
D O I
10.1515/znc-2023-0175
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Bio-electrochemical Systems (BES), particularly Microbial Fuel Cells (MFC), have emerged as promising technologies in environmental biotechnology. This study focused on optimizing the anode bacterial culture immobilization process to enhance BES performance. The investigation combines and modifies two key immobilization methods: covalent bonding with glutaraldehyde and inclusion in a chitosan gel in order to meet the criteria and requirements of the bio-anodes in MFC. The performance of MFCs with immobilized and suspended cultures was compared in parallel experiments. Both types showed similar substrate utilization dynamics with slight advantage of the immobilized bio-anode considering the lower concentration of biomass. The immobilized MFC exhibited higher power generation and metabolic activity, as well. Probably, this is due to improved anodic respiration and higher coulombic efficiency of the reactor. Analysis of organic acids content supported this conclusion showing significant inhibition of the fermentation products production in the MFC reactor with immobilized anode culture.
引用
收藏
页码:149 / 153
页数:5
相关论文
共 50 条
  • [1] Modification of clayware ceramic membrane for enhancing the performance of microbial fuel cell
    Suransh, Jain
    Tiwari, Alok Kumar
    Mungray, Arvind Kumar
    ENVIRONMENTAL PROGRESS & SUSTAINABLE ENERGY, 2020, 39 (06)
  • [2] Microbial fuel cell (MFC) power performance improvement through enhanced microbial electrogenicity
    Li, Ming
    Zhou, Minghua
    Tian, Xiaoyu
    Tan, Chaolin
    McDaniel, Cameron T.
    Hassett, Daniel J.
    Gu, Tingyue
    BIOTECHNOLOGY ADVANCES, 2018, 36 (04) : 1316 - 1327
  • [3] Using rhodium as a cathode catalyst for enhancing performance of microbial fuel cell
    Bhowmick, G. D.
    Das, Sovik
    Adhikary, K.
    Ghangrekar, M. M.
    Mitra, A.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (39) : 22218 - 22222
  • [4] Enhancing microbial fuel cell performance using ceramic additive as biomedia
    Singh, Aradhana
    Ieropoulos, Ioannis A.
    RENEWABLE ENERGY, 2025, 244
  • [5] Performance improvement of microbial fuel cell through artificial intelligence
    Ghasemi, Mostafa
    Nassef, Ahmed M.
    Al-Dhaifallah, Mujahed
    Rezk, Hegazy
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2021, 45 (01) : 342 - 354
  • [6] Improved performance of microbial fuel cell through addition of rhamnolipid
    Wen, Qing
    Kong, Fanying
    Ren, Yueming
    Cao, Dianxue
    Wang, Guiling
    Zheng, Hongtao
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (12) : 1710 - 1713
  • [7] Performance and microbial diversity of palm oil mill effluent microbial fuel cell
    Jong, B. C.
    Liew, P. W. Y.
    Juri, M. Lebai
    Kim, B. H.
    Dzomir, A. Z. Mohd
    Leo, K. W.
    Awang, M. R.
    LETTERS IN APPLIED MICROBIOLOGY, 2011, 53 (06) : 660 - 667
  • [8] Application of Bimetallic Cathode Catalysts for Enhancing the Performance of Microbial Fuel Cell: A Review
    Yasser Bashir
    Rishabh Raj
    Sovik Das
    M. M. Ghangrekar
    Water, Air, & Soil Pollution, 2023, 234
  • [9] Application of Bimetallic Cathode Catalysts for Enhancing the Performance of Microbial Fuel Cell: A Review
    Bashir, Yasser
    Raj, Rishabh
    Das, Sovik
    Ghangrekar, M. M.
    WATER AIR AND SOIL POLLUTION, 2023, 234 (02)
  • [10] Immobilization of anode-attached microbes in a microbial fuel cell
    Rachel C Wagner
    Sikandar Porter-Gill
    Bruce E Logan
    AMB Express, 2