High-power single-frequency depressed-cladding, confined-doping Yb3+ fiber amplifier

被引:0
作者
Kruska, Kristopher [1 ,2 ]
Booker, Phillip [1 ,2 ]
Wessels, Peter [1 ,2 ]
Neumann, Joerg [1 ,2 ]
Kracht, Dietmar [1 ,2 ]
机构
[1] Laser Zentrum Hannover eV, Hollerithallee 8, D-30419 Hannover, Germany
[2] Cluster Excellence QuantumFrontiers, Welfengarten 1, D-30167 Hannover, Germany
来源
FIBER LASERS XXI:TECHNOLOGY AND SYSTEMS | 2024年 / 12865卷
关键词
depressed cladding; confined doping; fiber amplifier; single frequency; gravitational waves;
D O I
10.1117/12.3001458
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The output power of single-frequency fiber amplifiers is usually limited by nonlinear effects such as stimulated Brillouin scattering (SBS). To obtain higher power thresholds for the onset of unwanted nonlinear effects, the mode area of the fibers in use needs to be increased. Specialty fibers can provide larger mode areas and thus push the current power limits of single-frequency fiber amplifiers while maintaining single-mode beam quality as required by next generation gravitational wave detectors. Fibers with a large core diameter, depressed cladding around the core and a confined doping (DCCD-fiber) inside the core are by now commercially available and address the need for large mode area fibers while maintaining single-mode operation. The depressed cladding leads to a smaller effective refractive index difference for higher order modes (HOM) in comparison to the fundamental mode which results in a significant increase of bending losses for the HOM. The confined doping results in a selective gain increase for the fundamental mode. Here, we present a forward pumped single-frequency amplifier based on an Yb3+-doped DCCD fiber. With this fiber, an output power of 400 W was achieved with a slope efficiency of 75 %, and a PER of 15 dB. The amplifier showed no signs of SBS or parasitic lasing of the amplified spontaneous emission. This work will evaluate the potential of the used DCCD fiber in the context of next generation gravitational wave detector lasers.
引用
收藏
页数:6
相关论文
共 16 条
[1]   GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Acernese, F. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Afrough, M. ;
Agarwal, B. ;
Agathos, M. ;
Agatsuma, K. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Aiello, L. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Allen, G. ;
Allocca, A. ;
Altin, P. A. ;
Amato, A. ;
Ananyeva, A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Angelova, S. V. ;
Antier, S. ;
Appert, S. ;
Arai, K. ;
Araya, M. C. ;
Areeda, J. S. ;
Arnaud, N. ;
Arun, K. G. ;
Ascenzi, S. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Astone, P. ;
Atallah, D. V. ;
Aufmuth, P. ;
Aulbert, C. ;
AultONeal, K. ;
Austin, C. ;
Avila-Alvarez, A. ;
Babak, S. ;
Bacon, P. ;
Bader, M. K. M. .
PHYSICAL REVIEW LETTERS, 2017, 119 (14)
[2]   Exploring the sensitivity of next generation gravitational wave detectors [J].
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. D. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. B. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Allen, B. ;
Altin, P. A. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. C. ;
Areeda, J. S. ;
Arun, K. G. ;
Ashton, G. ;
Ast, M. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barclay, S. E. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Bell, A. S. ;
Berger, B. K. ;
Bergmann, G. ;
Berry, C. P. L. ;
Betzwieser, J. ;
Bhagwat, S. ;
Bhandare, R. ;
Bilenko, I. A. .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (04)
[3]  
Abbott B. P., 2016, PHYSICAL REVIEW LETTERS, V116, P61102, DOI DOI 10.1103/PHYSREVLETT.116.061102
[4]  
Abernathy M., 2011, Document No. ET-0106A-10
[5]   Sequential high power laser amplifiers for gravitational wave detection [J].
Bode, Nina ;
Meylahn, Fabian ;
Willke, Benno .
OPTICS EXPRESS, 2020, 28 (20) :29469-29478
[6]   Ytterbium-doped large-mode-area all-solid photonic bandgap fiber lasers [J].
Gu, Guancheng ;
Kong, Fanting ;
Hawkins, Thomas ;
Parsons, Joshua ;
Jones, Maxwell ;
Dunn, Christopher ;
Kalichevsky-Dong, Monica T. ;
Saitoh, Kunimasa ;
Dong, Liang .
OPTICS EXPRESS, 2014, 22 (11) :13962-13968
[7]   Single-frequency chirally coupled-core all-fiber amplifier with 100 W in a linearly polarized TEM00 mode [J].
Hochheim, Sven ;
Steinke, Michael ;
Wessels, Peter ;
De Varona, Omar ;
Koponen, Joona ;
Lowder, Tyson ;
Novotny, Steffen ;
Neumann, Jorg ;
Kracht, Dietmar .
OPTICS LETTERS, 2020, 45 (04) :939-942
[8]   Advanced LIGO: length sensing and control in a dual recycled interferometric gravitational wave antenna [J].
Izumi, Kiwamu ;
Sigg, Daniel .
CLASSICAL AND QUANTUM GRAVITY, 2017, 34 (01)
[9]   Laser beam quality and pointing measurement with an optical resonator [J].
Kwee, Patrick ;
Seifert, Frank ;
Willke, Benno ;
Danzmann, Karsten .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2007, 78 (07)
[10]   Extended single-mode photonic crystal fiber lasers [J].
Limpert, J ;
Schmidt, O ;
Rothhardt, J ;
Röser, F ;
Schreiber, T ;
Tünnermann, A ;
Ermeneux, S ;
Yvernault, P ;
Salin, F .
OPTICS EXPRESS, 2006, 14 (07) :2715-2720