Self-similar fractals and common hypercyclicity

被引:0
作者
Costa, Fernando [1 ]
机构
[1] Univ Fed Paraiba Campus 1, Dept Matemat, Jardim Univ S-N, BR-58051900 Joao Pessoa, Brazil
关键词
Common hypercyclicity; Hausdorff dimension; Self-similar fractal; H & ouml; lder curve; VECTORS;
D O I
10.1016/j.jfa.2024.110473
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We obtain a multi -dimensional generalization of the CostakisSambarino criterion for common hypercyclic vectors with optimal consequences on a large class of fractals. Applications include families of products of backward shifts parameterized by any H & ouml;lder continuous curve in R d , for all d >= 1. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页数:35
相关论文
共 28 条
[1]   Common hypercyclic vectors for multiples of backward shift [J].
Abakumov, E ;
Gordon, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (02) :494-504
[2]  
Allaart PC, 2011, REAL ANAL EXCH, V37, P1
[3]  
[Anonymous], 1984, London Math. Soc. Lecture Note Ser.
[4]  
[Anonymous], 2003, Fractal Geometry-Mathematical Foundations and Applications
[5]  
[Anonymous], 2011, Linear chaos
[6]   How to get common universal vectors [J].
Bayart, F. ;
Matheron, E. .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2007, 56 (02) :553-580
[7]  
Bayart F, 2009, CAMB TRACT MATH, P1, DOI 10.1017/CBO9780511581113
[8]  
Bayart F, 2004, J OPERAT THEOR, V52, P353
[9]   Common Hypercyclic Vectors and Dimension of the Parameter Set [J].
Bayart, Frederic ;
Costa Jr, Fernando ;
Menet, Quentin .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2022, 71 (04) :1763-1795
[10]   Genericity of wild holomorphic functions and common hypercyclic vectors [J].
Costakis, G ;
Sambarino, M .
ADVANCES IN MATHEMATICS, 2004, 182 (02) :278-306