Non-stationary KPZ equation from ASEP with slow bonds

被引:0
作者
Yang, Kevin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 02期
关键词
KPZ equation; Universality; Slow bond; STOCHASTIC BURGERS-EQUATION; EXCLUSION PROCESS; PHASE-TRANSITION; FLUCTUATIONS; LIMIT; NONEQUILIBRIUM; SSEP;
D O I
10.1214/23-AIHP1364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the height functions for a class of non-integrable and non-stationary particle systems converge to the KPZ equation, thereby making progress on the universality of the KPZ equation. The models herein are ASEP (Comm. Math. Phys. 183 (1997) 571-606) with a mesoscopic family of slow bonds, thus we partially extend (Comm. Math. Phys. 346 (2016) 801-838) to non-stationary models and add to the almost empty set of non-integrable, non-stationary interacting particle systems for which universality is established. To do this, we develop further the strategy of (Yang (2020); Probab. Theory Related Fields 183 (2022) 415-545) introduce a method to establish a novel principle that builds upon the classical hydrodynamic limits of (Comm. Math. Phys. 118 (1988) 31-59) and that we call local hydrodynamics.
引用
收藏
页码:1246 / 1294
页数:49
相关论文
共 40 条
[31]   Solving the KPZ equation [J].
Hairer, Martin .
ANNALS OF MATHEMATICS, 2013, 178 (02) :559-664
[32]   EXACT RESULTS FOR THE ASYMMETRIC SIMPLE EXCLUSION PROCESS WITH A BLOCKAGE [J].
JANOWSKY, SA ;
LEBOWITZ, JL .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (1-2) :35-51
[33]   FINITE-SIZE EFFECTS AND SHOCK FLUCTUATIONS IN THE ASYMMETRIC SIMPLE-EXCLUSION PROCESS [J].
JANOWSKY, SA ;
LEBOWITZ, JL .
PHYSICAL REVIEW A, 1992, 45 (02) :618-625
[34]   DYNAMIC SCALING OF GROWING INTERFACES [J].
KARDAR, M ;
PARISI, G ;
ZHANG, YC .
PHYSICAL REVIEW LETTERS, 1986, 56 (09) :889-892
[35]  
Kipnis C., 1999, Grundlehren der Mathematischen Wissenschaften Fundamental Principles of Mathematical Sciences, V320
[36]  
Mueller C., 1991, Stochastics and Stochastics Reports, V37, P225, DOI 10.1080/17442509108833738
[37]   CONVERGENCE OF EXCLUSION PROCESSES AND THE KPZ EQUATION TO THE KPZ FIXED POINT [J].
Quastel, Jeremy ;
Sarkar, Sourav .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, :251-289
[38]  
Yang KV, 2021, Arxiv, DOI arXiv:2002.05176
[39]   KPZ equation from non-simple variations on open ASEP [J].
Yang, Kevin .
PROBABILITY THEORY AND RELATED FIELDS, 2022, 183 (1-2) :415-545
[40]   Logarithmic Sobolev inequality for generalized simple exclusion processes [J].
Yau, HT .
PROBABILITY THEORY AND RELATED FIELDS, 1997, 109 (04) :507-538