Non-stationary KPZ equation from ASEP with slow bonds

被引:0
作者
Yang, Kevin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 02期
关键词
KPZ equation; Universality; Slow bond; STOCHASTIC BURGERS-EQUATION; EXCLUSION PROCESS; PHASE-TRANSITION; FLUCTUATIONS; LIMIT; NONEQUILIBRIUM; SSEP;
D O I
10.1214/23-AIHP1364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the height functions for a class of non-integrable and non-stationary particle systems converge to the KPZ equation, thereby making progress on the universality of the KPZ equation. The models herein are ASEP (Comm. Math. Phys. 183 (1997) 571-606) with a mesoscopic family of slow bonds, thus we partially extend (Comm. Math. Phys. 346 (2016) 801-838) to non-stationary models and add to the almost empty set of non-integrable, non-stationary interacting particle systems for which universality is established. To do this, we develop further the strategy of (Yang (2020); Probab. Theory Related Fields 183 (2022) 415-545) introduce a method to establish a novel principle that builds upon the classical hydrodynamic limits of (Comm. Math. Phys. 118 (1988) 31-59) and that we call local hydrodynamics.
引用
收藏
页码:1246 / 1294
页数:49
相关论文
共 40 条
[21]   Phase transition in equilibrium fluctuations of symmetric slowed exclusion [J].
Franco, Tertuliano ;
Goncalves, Patricia ;
Neumann, Adriana .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (12) :4156-4185
[22]   HYDRODYNAMIC LIMIT FOR A TYPE OF EXCLUSION PROCESS WITH SLOW BONDS IN DIMENSION d ≥ 2 [J].
Franco, Tertuliano ;
Neumann, Adriana ;
Valle, Glauco .
JOURNAL OF APPLIED PROBABILITY, 2011, 48 (02) :333-351
[23]   Stochastic Burgers equation from long range exclusion interactions [J].
Goncalves, Patricia ;
Jara, Milton .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (12) :4029-4052
[24]   A STOCHASTIC BURGERS EQUATION FROM A CLASS OF MICROSCOPIC INTERACTIONS [J].
Goncalves, Patricia ;
Jara, Milton ;
Sethuraman, Sunder .
ANNALS OF PROBABILITY, 2015, 43 (01) :286-338
[25]   Nonlinear Fluctuations of Weakly Asymmetric Interacting Particle Systems [J].
Goncalves, Patricia ;
Jara, Milton .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 212 (02) :597-644
[26]   Scaling Limits of Additive Functionals of Interacting Particle Systems [J].
Goncalves, Patricia ;
Jara, Milton .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2013, 66 (05) :649-677
[27]   ENERGY SOLUTIONS OF KPZ ARE UNIQUE [J].
Gubinelli, Massimiliano ;
Perkowski, Nicolas .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 31 (02) :427-471
[28]   NONLINEAR DIFFUSION LIMIT FOR A SYSTEM WITH NEAREST NEIGHBOR INTERACTIONS [J].
GUO, MZ ;
PAPANICOLAOU, GC ;
VARADHAN, SRS .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 118 (01) :31-59
[29]   A theory of regularity structures [J].
Hairer, M. .
INVENTIONES MATHEMATICAE, 2014, 198 (02) :269-504
[30]   A CLASS OF GROWTH MODELS RESCALING TO KPZ [J].
Hairer, Martin ;
Quastel, Jeremy .
FORUM OF MATHEMATICS PI, 2018, 6