共 40 条
Non-stationary KPZ equation from ASEP with slow bonds
被引:0
作者:
Yang, Kevin
[1
]
机构:
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源:
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
|
2024年
/
60卷
/
02期
关键词:
KPZ equation;
Universality;
Slow bond;
STOCHASTIC BURGERS-EQUATION;
EXCLUSION PROCESS;
PHASE-TRANSITION;
FLUCTUATIONS;
LIMIT;
NONEQUILIBRIUM;
SSEP;
D O I:
10.1214/23-AIHP1364
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We prove the height functions for a class of non-integrable and non-stationary particle systems converge to the KPZ equation, thereby making progress on the universality of the KPZ equation. The models herein are ASEP (Comm. Math. Phys. 183 (1997) 571-606) with a mesoscopic family of slow bonds, thus we partially extend (Comm. Math. Phys. 346 (2016) 801-838) to non-stationary models and add to the almost empty set of non-integrable, non-stationary interacting particle systems for which universality is established. To do this, we develop further the strategy of (Yang (2020); Probab. Theory Related Fields 183 (2022) 415-545) introduce a method to establish a novel principle that builds upon the classical hydrodynamic limits of (Comm. Math. Phys. 118 (1988) 31-59) and that we call local hydrodynamics.
引用
收藏
页码:1246 / 1294
页数:49
相关论文