Non-stationary KPZ equation from ASEP with slow bonds

被引:0
作者
Yang, Kevin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 02期
关键词
KPZ equation; Universality; Slow bond; STOCHASTIC BURGERS-EQUATION; EXCLUSION PROCESS; PHASE-TRANSITION; FLUCTUATIONS; LIMIT; NONEQUILIBRIUM; SSEP;
D O I
10.1214/23-AIHP1364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the height functions for a class of non-integrable and non-stationary particle systems converge to the KPZ equation, thereby making progress on the universality of the KPZ equation. The models herein are ASEP (Comm. Math. Phys. 183 (1997) 571-606) with a mesoscopic family of slow bonds, thus we partially extend (Comm. Math. Phys. 346 (2016) 801-838) to non-stationary models and add to the almost empty set of non-integrable, non-stationary interacting particle systems for which universality is established. To do this, we develop further the strategy of (Yang (2020); Probab. Theory Related Fields 183 (2022) 415-545) introduce a method to establish a novel principle that builds upon the classical hydrodynamic limits of (Comm. Math. Phys. 118 (1988) 31-59) and that we call local hydrodynamics.
引用
收藏
页码:1246 / 1294
页数:49
相关论文
共 40 条
[11]   Weakly Asymmetric Non-Simple Exclusion Process and the Kardar-Parisi-Zhang Equation [J].
Dembo, Amir ;
Tsai, Li-Cheng .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 341 (01) :219-261
[12]   Non-equilibrium fluctuations for the SSEP with a slow bond [J].
Erhard, D. ;
Franco, T. ;
Goncalves, P. ;
Neumann, A. ;
Tavares, M. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (02) :1099-1128
[13]   Hydrodynamics for SSEP with non-reversible slow boundary dynamics: Part II, below the critical regime [J].
Erignoux, C. ;
Goncalves, P. ;
Nahum, G. .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2020, 17 (02) :791-823
[14]   Hydrodynamics for SSEP with Non-reversible Slow Boundary Dynamics: Part I, the Critical Regime and Beyond [J].
Erignoux, C. ;
Goncalves, P. ;
Nahum, G. .
JOURNAL OF STATISTICAL PHYSICS, 2020, 181 (04) :1433-1469
[15]  
Franco T., 2015, M PART SYST PDES SPR, P177
[16]   Non-equilibrium and stationary fluctuations of a slowed boundary symmetric exclusion [J].
Franco, Tertuliano ;
Goncalves, Patricia ;
Neumann, Adriana .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2019, 129 (04) :1413-1442
[17]   LARGE DEVIATIONS FOR THE EXCLUSION PROCESS WITH A SLOW BOND [J].
Franco, Tertuliano ;
Neumann, Adriana .
ANNALS OF APPLIED PROBABILITY, 2017, 27 (06) :3547-3587
[18]   Crossover to the Stochastic Burgers Equation for the WASEP with a Slow Bond [J].
Franco, Tertuliano ;
Goncalves, Patricia ;
Simon, Marielle .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 346 (03) :801-838
[19]  
Franco T, 2015, T AM MATH SOC, V367, P6131
[20]   Hydrodynamical behavior of symmetric exclusion with slow bonds [J].
Franco, Tertuliano ;
Goncalves, Patricia ;
Neumann, Adriana .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (02) :402-427