Non-stationary KPZ equation from ASEP with slow bonds

被引:0
作者
Yang, Kevin [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2024年 / 60卷 / 02期
关键词
KPZ equation; Universality; Slow bond; STOCHASTIC BURGERS-EQUATION; EXCLUSION PROCESS; PHASE-TRANSITION; FLUCTUATIONS; LIMIT; NONEQUILIBRIUM; SSEP;
D O I
10.1214/23-AIHP1364
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the height functions for a class of non-integrable and non-stationary particle systems converge to the KPZ equation, thereby making progress on the universality of the KPZ equation. The models herein are ASEP (Comm. Math. Phys. 183 (1997) 571-606) with a mesoscopic family of slow bonds, thus we partially extend (Comm. Math. Phys. 346 (2016) 801-838) to non-stationary models and add to the almost empty set of non-integrable, non-stationary interacting particle systems for which universality is established. To do this, we develop further the strategy of (Yang (2020); Probab. Theory Related Fields 183 (2022) 415-545) introduce a method to establish a novel principle that builds upon the classical hydrodynamic limits of (Comm. Math. Phys. 118 (1988) 31-59) and that we call local hydrodynamics.
引用
收藏
页码:1246 / 1294
页数:49
相关论文
共 40 条
[1]   Probability Distribution of the Free Energy of the Continuum Directed Random Polymer in 1+1 Dimensions [J].
Amir, Gideon ;
Corwin, Ivan ;
Quastel, Jeremy .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (04) :466-537
[2]  
Basu R., PREPRINT
[3]  
Basu R, 2016, Arxiv, DOI arXiv:1408.3464
[4]   Stochastic burgers and KPZ equations from particle systems [J].
Bertini, L ;
Giacomin, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 183 (03) :571-607
[5]  
Billingsley Patrick, 1999, CONVERGE PROBAB MEAS, DOI DOI 10.1002/9780470316962
[6]   Hydrodynamics of Porous Medium Model with Slow Reservoirs [J].
Bonorino, L. ;
de Paula, R. ;
Goncalves, P. ;
Neumann, A. .
JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (03) :748-788
[7]  
Bramson M, 2002, ANN PROBAB, V30, P1539
[8]   ASEP(q, j) converges to the KPZ equation [J].
Corwin, Ivan ;
Shen, Hao ;
Tsai, Li-Cheng .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2018, 54 (02) :995-1012
[9]   KPZ EQUATION LIMIT OF HIGHER-SPIN EXCLUSION PROCESSES [J].
Corwin, Ivan ;
Tsai, Li-Cheng .
ANNALS OF PROBABILITY, 2017, 45 (03) :1771-1798
[10]   THE KARDAR-PARISI-ZHANG EQUATION AND UNIVERSALITY CLASS [J].
Corwin, Ivan .
RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (01)