A review of unsupervised learning in astronomy

被引:11
作者
Fotopoulou, S. [1 ]
机构
[1] Univ Bristol, Sch Phys, HH Wills Phys Lab, Tyndall Ave, Bristol BS8 1TL, England
关键词
Unsupervised learning; Machine learning; Data intensive astronomy; Extragalactic astronomy; SELF-ORGANIZING MAPS; DIGITAL SKY SURVEY; INDEPENDENT COMPONENT ANALYSIS; GALAXY MORPHOLOGY; X-RAY; AUTOMATED CLASSIFICATION; DIMENSIONALITY REDUCTION; SPECTRAL CLASSIFICATION; ANOMALY DETECTION; STELLAR SPECTRA;
D O I
10.1016/j.ascom.2024.100851
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This review summarises popular unsupervised learning methods, and gives an overview of their past, current, and future uses in astronomy. Unsupervised learning aims to organise the information content of a dataset, in such a way that knowledge can be extracted. Traditionally this has been achieved through dimensionality reduction techniques that aid the ranking of a dataset, for example through principal component analysis or by using auto -encoders, or simpler visualisation of a high dimensional space, for example through the use of a self organising map. Other desirable properties of unsupervised learning include the identification of clusters, i.e. groups of similar objects, which has traditionally been achieved by the k -means algorithm and more recently through density -based clustering such as HDBSCAN. More recently, complex frameworks have emerged, that chain together dimensionality reduction and clustering methods. However, no dataset is fully unknown. Thus, nowadays a lot of research has been directed towards self -supervised and semi -supervised methods that stand to gain from both supervised and unsupervised learning.
引用
收藏
页数:23
相关论文
共 320 条
[41]   Stellar population synthesis at the resolution of 2003 [J].
Bruzual, G ;
Charlot, S .
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2003, 344 (04) :1000-1028
[42]   Stellar Spectral Subclass Classification Based on Locally Linear Embedding [J].
Bu Yude ;
Pan Jingchang ;
Jiang Bin ;
Wei Peng .
PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 2013, 65 (04)
[43]   Stellar spectral subclasses classification based on Isomap and SVM [J].
Bu, Yude ;
Chen, Fuqiang ;
Pan, Jingchang .
NEW ASTRONOMY, 2014, 28 :35-43
[44]   Systematic Labeling Bias in Galaxy Morphologies [J].
Cabrera-Vives, Guillermo ;
Miller, Christopher J. ;
Schneider, Jeff .
ASTRONOMICAL JOURNAL, 2018, 156 (06)
[45]  
Campello Ricardo J. G. B., 2013, Advances in Knowledge Discovery and Data Mining. 17th Pacific-Asia Conference (PAKDD 2013). Proceedings, P160, DOI 10.1007/978-3-642-37456-2_14
[46]   Hierarchical Density Estimates for Data Clustering, Visualization, and Outlier Detection [J].
Campello, Ricardo J. G. B. ;
Moulavi, Davoud ;
Zimek, Arthur ;
Sander, Joerg .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2015, 10 (01)
[47]   Expanding associations in the Vela-Puppis region 3D structure and kinematics of the young population [J].
Cantat-Gaudin, T. ;
Jordi, C. ;
Wright, N. J. ;
Armstrong, J. J. ;
Vallenari, A. ;
Balaguer-Nunez, L. ;
Ramos, P. ;
Bossini, D. ;
Padoan, P. ;
Pelkonen, V. M. L. ;
Mapelli, M. ;
Jeffries, R. D. .
ASTRONOMY & ASTROPHYSICS, 2019, 626
[48]   A Gaia DR2 view of the open cluster population in the Milky Way [J].
Cantat-Gaudin, T. ;
Jordi, C. ;
Vallenari, A. ;
Bragaglia, A. ;
Balaguer-Nunez, L. ;
Soubiran, C. ;
Bossini, D. ;
Moitinho, A. ;
Castro-Ginard, A. ;
Krone-Martins, A. ;
Casamiquela, L. ;
Sordo, R. ;
Carrera, R. .
ASTRONOMY & ASTROPHYSICS, 2018, 618
[49]   Component Separation With Flexible Models-Application to Multichannel Astrophysical Observations [J].
Cardoso, Jean-Francois ;
Le Jeune, Maude ;
Delabrouille, Jacques ;
Betoule, Marc ;
Patanchon, Guillaume .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2008, 2 (05) :735-746
[50]   Hunting for open clusters in Gaia DR2: the Galactic anticentre [J].
Castro-Ginard, A. ;
Jordi, C. ;
Luri, X. ;
Cantat-Gaudin, T. ;
Balaguer-Nunez, L. .
ASTRONOMY & ASTROPHYSICS, 2019, 627