Uniqueness of Single Peak Solutions for a Kirchhoff Equation

被引:0
|
作者
Lv, Junhao [1 ]
Yi, Shichao [1 ,2 ]
Sun, Bo [1 ]
机构
[1] Jiangsu Univ Sci & Technol, Sch Sci, Zhenjiang 212003, Peoples R China
[2] Yangzijiang Shipbldg Grp, Taizhou 212299, Peoples R China
关键词
Kirchhoff equations; single-peak solutions; uniqueness; Pohozaev identity; BOUND-STATES;
D O I
10.3390/math12101462
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deal with the following singular perturbation Kirchhoff equation: - (& varepsilon;(2)a + & varepsilon;b integral(3)(R)|del u|(2)dy) Delta u + Q(y)u = |u|(p-1)u, u is an element of H-1 (R-3), where constants a, b, epsilon > 0 and 1 < p < 5. In this paper, we prove the uniqueness of the concentrated solutions under some suitable assumptions on a symptotic behaviors of Q(y)and its first derivatives by using a type of Pohozaev identity for a small enough epsilon.To some extent, our result exhibits a new phenomenon for a kind of Q(x) which allows for different orders in different directions
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Li, Gongbao
    Niu, Yahui
    ACTA MATHEMATICA SCIENTIA, 2020, 40 (01) : 90 - 112
  • [2] The Existence and Local Uniqueness of Multi-Peak Positive Solutions to a Class of Kirchhoff Equation
    Gongbao Li
    Yahui Niu
    Acta Mathematica Scientia, 2020, 40 : 90 - 112
  • [3] THE EXISTENCE AND LOCAL UNIQUENESS OF MULTI-PEAK POSITIVE SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATION
    李工宝
    牛亚慧
    ActaMathematicaScientia, 2020, 40 (01) : 90 - 112
  • [4] LOCAL UNIQUENESS OF MULTI-PEAK SOLUTIONS TO A CLASS OF KIRCHHOFF EQUATIONS
    Li, Gongbao
    Niu, Yahui
    Xiang, Chang-Lin
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2020, 45 : 121 - 137
  • [5] Existence and uniqueness of normalized solutions for the Kirchhoff equation
    Zeng, Xiaoyu
    Zhang, Yimin
    APPLIED MATHEMATICS LETTERS, 2017, 74 : 52 - 59
  • [6] Concentration behavior and local uniqueness of normalized solutions for Kirchhoff type equation
    Guo, Helin
    Liu, Haolin
    Zhao, Lingling
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [7] The Existence and Local Uniqueness of Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Guo, Jiaxing
    Li, Gongbao
    ACTA MATHEMATICA SCIENTIA, 2023, 43 (03) : 1131 - 1160
  • [8] Single Peak Solutions for a Schrodinger Equation with Variable Exponent
    Liu, Zhong Yuan
    Luo, Peng
    Xie, Hua Fei
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2023, 39 (11) : 2207 - 2218
  • [9] Existence and Local Uniqueness of Normalized Multi-Peak Solutions to a Class of Kirchhoff Type Equations
    Cui, Leilei
    Li, Gongbao
    Luo, Peng
    Wang, Chunhua
    MINIMAX THEORY AND ITS APPLICATIONS, 2022, 7 (02): : 207 - 252
  • [10] Multi-peak positive solutions to a class of Kirchhoff equations
    Luo, Peng
    Peng, Shuangjie
    Wang, Chunhua
    Xiang, Chang-Lin
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2019, 149 (04) : 1097 - 1122