High Q-Factor Diamond Optomechanical Resonators with Silicon Vacancy Centers at Millikelvin Temperatures

被引:4
|
作者
Joe, Graham [1 ]
Chia, Cleaven [1 ,2 ]
Pingault, Benjamin [1 ,3 ,4 ,5 ]
Haas, Michael [1 ]
Chalupnik, Michelle [1 ]
Cornell, Eliza [1 ]
Kuruma, Kazuhiro [1 ]
Machielse, Bartholomeus [6 ]
Sinclair, Neil [1 ]
Meesala, Srujan [7 ]
Loncar, Marko [1 ]
机构
[1] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] ASTAR, Inst Mat Res & Engn IMRE, Singapore 138634, Singapore
[3] Delft Univ Technol, QuTech, NL-2600 GA Delft, Netherlands
[4] Argonne Natl Lab, Ctr Mol Engn, Lemont, IL 60439 USA
[5] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[6] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[7] CALTECH, Inst Quantum Informat & Matter & Thomas J Watson S, Lab Appl Phys, Pasadena, CA 91125 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
optomechanics; silicon vacancy; diamond; phonons;
D O I
10.1021/acs.nanolett.3c04953
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Phonons are envisioned as coherent intermediaries between different types of quantum systems. Engineered nanoscale devices, such as optomechanical crystals (OMCs), provide a platform to utilize phonons as quantum information carriers. Here we demonstrate OMCs in diamond designed for strong for interactions between phonons and a silicon vacancy (SiV) spin. Using optical measurements at millikelvin temperatures, we measure a line width of 13 kHz (Q-factor of similar to 4.4 x 10(5)) for a 6 GHz acoustic mode, a record for diamond in the GHz frequency range and within an order of magnitude of state-of-the-art line widths for OMCs in silicon. We investigate SiV optical and spin properties in these devices and outline a path toward a coherent spin-phonon interface.
引用
收藏
页码:6831 / 6837
页数:7
相关论文
共 50 条
  • [1] Optomechanical coupling to ultra-high Q-factor phononic resonators on-chip at cryogenic temperatures
    Kharel, Prashanta
    Chu, Yiwen
    Power, Michael
    Schoelkopf, Robert J.
    Rakich, Peter T.
    2018 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2018,
  • [2] VERY HIGH Q-FACTOR RESONATORS IN MONOCRYSTALLINE SILICON
    BUSER, RA
    DEROOIJ, NF
    SENSORS AND ACTUATORS A-PHYSICAL, 1990, 21 (1-3) : 323 - 327
  • [3] High Q-Factor Millimeter-Wave Silicon Resonators
    Krupka, Jerzy
    Kaminski, Pawel
    Jensen, Leif
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2016, 64 (12) : 4149 - 4154
  • [4] Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes
    Choe, Sunuk
    Lee, Donghun
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (01) : 95 - 99
  • [5] Strain Simulation of Diamond NV Centers in High Q-Factor Diamond Membranes
    Sunuk Choe
    Donghun Lee
    Journal of the Korean Physical Society, 2018, 73 : 95 - 99
  • [6] Billion Q-factor in silicon WGM resonators
    Shitikov, A. E.
    Bilenko, I. A.
    Kondratiev, N. M.
    Lobanov, V. E.
    Markosyan, A.
    Gorodetsky, M. L.
    OPTICA, 2018, 5 (12): : 1525 - 1528
  • [7] Silicon optomechanical crystal resonator at millikelvin temperatures
    Meenehan, Sean M.
    Cohen, Justin D.
    Groeblacher, Simon
    Hill, Jeff T.
    Safavi-Naeini, Amir H.
    Aspelmeyer, Markus
    Painter, Oskar
    PHYSICAL REVIEW A, 2014, 90 (01):
  • [8] Extremely High Q-factor Mechanical Modes in Quartz Bulk Acoustic Wave Resonators at MilliKelvin Temperature
    Goryachev, M.
    Creedon, D. L.
    Ivanov, E. N.
    Galliou, S.
    Bourquin, R.
    Tobar, M. E.
    ELEVENTH INTERNATIONAL CONFERENCE ON QUANTUM COMMUNICATION, MEASUREMENT AND COMPUTATION (QCMC), 2014, 1633 : 90 - 92
  • [9] All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures
    Becker, Jonas N.
    Pingault, Benjamin
    Gross, David
    Guendogan, Mustafa
    Kukharchyk, Nadezhda
    Markham, Matthew
    Edmonds, Andrew
    Atatuere, Mete
    Bushev, Pavel
    Becher, Christoph
    PHYSICAL REVIEW LETTERS, 2018, 120 (05)
  • [10] Coherent population trapping and spin relaxation of a silicon vacancy center in diamond at millikelvin temperatures
    Wu, Shuhao
    Li, Xinzhu
    Gallagher, Ian
    Lawrie, Benjamin
    Wang, Hailin
    PHYSICAL REVIEW B, 2025, 111 (03)