Machine-learning stock market volatility: Predictability, drivers, and economic value

被引:0
|
作者
Diaz, Juan D. [1 ]
Hansen, Erwin [2 ]
Cabrera, Gabriel [3 ]
机构
[1] Univ Chile, Fac Econ & Business, Dept Management Control & Informat Syst, Diagonal Paraguay 257,Of 2001, Santiago, Chile
[2] Univ Chile, Fac Econ & Business, Dept Business Adm, Diagonal Paraguay 257, Of 1204, Santiago, Chile
[3] Univ Manchester, Alliance Manchester Business Sch, Manchester M15 6PB, England
关键词
Realized volatility; Machine learning; Forecasting; Technical indicators; Neural networks; PREMIUM; MODELS; PERFORMANCE; PREDICTION; REGRESSION; SELECTION;
D O I
10.1016/j.irfa.2024.103286
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
We investigate whether machine learning (ML) techniques, using a large set of financial and macroeconomic variables, help to predict S&P 500 realized volatility and deliver economic value. We evaluate regularization methods (Ridge, Lasso, and Elastic Net), tree-based methods (Random Forest and Gradient boosting), and Neural Networks. We find that ML algorithms outperform the benchmark model (HAR) at a short horizon (1 month), but not over longer periods (6 and 12 months). Regularization methods and Neural Networks emerge as the most competitive ML methods. We find that the quality of predictors is crucial, with financial and macroeconomic uncertainty proxies playing the most significant role. From an economic perspective, however, predictive ML models do not yield substantial gains compared to the benchmark.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] Machine Learning Based Stock Market Analysis: A Short Survey
    Vachhani, Hrishikesh
    Obiadat, Mohammad S.
    Thakkar, Arkesh
    Shah, Vyom
    Sojitra, Raj
    Bhatia, Jitendra
    Tanwar, Sudeep
    INNOVATIVE DATA COMMUNICATION TECHNOLOGIES AND APPLICATION, 2020, 46 : 12 - 26
  • [42] Predicting Stock Market Movements with Social Media and Machine Learning
    Koukaras, Paraskevas
    Tsichli, Vasiliki
    Tjortjis, Christos
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES (WEBIST), 2021, : 436 - 443
  • [43] Economic policy uncertainty and the Chinese stock market volatility: Novel evidence
    Li, Tao
    Ma, Feng
    Zhang, Xuehua
    Zhang, Yaojie
    ECONOMIC MODELLING, 2020, 87 : 24 - 33
  • [44] Pair Trading with Machine Learning Strategy in China Stock Market
    Zhang, Lizi
    PROCEEDINGS OF 2021 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INFORMATION SYSTEMS (ICAIIS '21), 2021,
  • [45] Do US economic conditions at the state level predict the realized volatility of oil-price returns? A quantile machine-learning approach
    Gupta, Rangan
    Pierdzioch, Christian
    FINANCIAL INNOVATION, 2023, 9 (01)
  • [46] Stock Market Forecasting with Different Input Indicators using Machine Learning and Deep Learning Techniques: A Review
    Verma, Satya
    Sahu, Satya Prakash
    Sahu, Tirath Prasad
    ENGINEERING LETTERS, 2023, 31 (01) : 19 - 19
  • [47] Momentum in machine learning: Evidence from the Taiwan stock market
    Bui, Dien Giau
    Kong, De-Rong
    Lin, Chih-Yung
    Lin, Tse-Chun
    PACIFIC-BASIN FINANCE JOURNAL, 2023, 82
  • [48] International commodity market and stock volatility predictability: Evidence from G7 countries
    Wang, Jiashun
    Wang, Jiqian
    Ma, Feng
    INTERNATIONAL REVIEW OF ECONOMICS & FINANCE, 2024, 90 : 62 - 71
  • [49] Machine Learning Algorithms in Stock Market Prediction
    Potdar, Jayesh
    Mathew, Rejo
    PROCEEDING OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS, BIG DATA AND IOT (ICCBI-2018), 2020, 31 : 192 - 197
  • [50] Forecasting stock market crisis events using deep and statistical machine learning techniques
    Chatzis, Sotirios P.
    Siakoulis, Vassilis
    Petropoulos, Anastasios
    Stavroulakis, Evangelos
    Vlachogiannakis, Nikos
    EXPERT SYSTEMS WITH APPLICATIONS, 2018, 112 : 353 - 371