Almost Sure Central Limit Theorem for Error Variance Estimator in Pth-Order Nonlinear Autoregressive Processes

被引:2
作者
Liang, Kaiyu [1 ]
Zhang, Yong [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
almost sure central limit theorem; nonlinear autoregressive processes; error variance estimator; residuals; LEAST-SQUARES ESTIMATION; DENSITY ESTIMATORS; UNIVERSAL RESULT; EXTENSION; PRODUCTS; SUMS; ASYMPTOTICS;
D O I
10.3390/math12101482
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, under some suitable assumptions, using the Taylor expansion, Borel-Cantelli lemma and the almost sure central limit theorem for independent random variables, the almost sure central limit theorem for error variance estimator in the pth-order nonlinear autoregressive processes with independent and identical distributed errors was established. Four examples, first-order autoregressive processes, self-exciting threshold autoregressive processes, threshold-exponential AR progresses and multilayer perceptrons progress, are given to verify the results.
引用
收藏
页数:16
相关论文
共 32 条
[1]   A universal result in almost sure central limit theory [J].
Berkes, I ;
Csáki, E .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2001, 94 (01) :105-134
[2]  
Billingsley P., 1999, Convergence of Probability Measures, Vsecond, DOI DOI 10.1002/9780470316962
[3]   AN ALMOST EVERYWHERE CENTRAL LIMIT-THEOREM [J].
BROSAMLER, GA .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 104 :561-574
[4]  
Chan K.S., 1986, J TIME SER ANAL, V7, P179, DOI [DOI 10.1111/J.1467-9892.1986.TB00501.X, 10.1111/j.1467-9892.1986.tb00501.x]
[5]  
Cheng F., 2010, STAT INFER STOCH PRO, V13, P43, DOI [10.1007/s11203-009-9036-9, DOI 10.1007/S11203-009-9036-9]
[6]   A goodness-of-fit test of the errors in nonlinear autoregressive time series models [J].
Cheng, Fuxia ;
Sun, Shuxia .
STATISTICS & PROBABILITY LETTERS, 2008, 78 (01) :50-59
[7]   Strong consistency of the distribution estimator in the nonlinear autoregressive time series [J].
Cheng, Fuxia .
JOURNAL OF MULTIVARIATE ANALYSIS, 2015, 142 :41-47
[8]   Variance estimation in nonlinear autoregressive time series models [J].
Cheng, Fuxia .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2011, 141 (04) :1588-1592
[9]   Asymptotics of kernel error density estimators in nonlinear autoregressive models [J].
Fu, Keang ;
Yang, Xiaorong .
JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (03) :831-838
[10]  
Hall P., 1980, Martingale Limit Theory and Its Application