MSTSENet: Multiscale Spectral-Spatial Transformer with Squeeze and Excitation network for hyperspectral image classification

被引:9
|
作者
Ahmad, Irfan [1 ]
Farooque, Ghulam [2 ]
Liu, Qichao [1 ]
Hadi, Fazal [1 ]
Xiao, Liang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Univ Management & Technol, Dept Informat & Syst, Lahore, Pakistan
关键词
Hyperspectral image classification; Spectral-spatial feature; Squeeze and Excitation (SE); Deep learning; Transformer; Remote sensing; NEURAL-NETWORK;
D O I
10.1016/j.engappai.2024.108669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image (HSI) classification pertains to the task of assigning a single label to each pixel by analyzing its spectral-spatial characteristics. Convolutional Neural Networks (CNNs) have garnered significant attention on account of their remarkable performance in feature representation. However, these approaches possess a restricted capacity to acquire highly similar spectral features. Recently, Attention -based approaches have been devised as a means to surmount the limitations inherent in CNNs. In this paper, we address a novel architecture for spectral-spatial feature extraction and HSI classification. The framework efficiently amalgamates the robustness and efficacy of three modern backbone networks, i.e., Multiscale CNN, Squeeze and Excitation (SE), and Transformer named MSTSENet. Initially, the multiscale convolution module integrates three branches of 3D convolution layers, each employing distinct kernel sizes, facilitating multiscale and multi -resolution feature extraction. Subsequently, the SE module enhances the inter -channel relationship by adaptively recalibrating the feature weight. The strategic fusion of the SE module with multiscale CNN strengthens deep feature extraction while introducing a minimal increment in overall parameters. Lastly, the Transformer module orchestrates information aggregation across different spectral-spatial regions, accurately modeling long-range contextual dependencies and capturing dominant feature representations. To evaluate the model performance, comprehensive experiments have been carried out on widely used benchmark HSI datasets. The overall accuracy of 98.74%, 99.83%, and 99.98% is achieved over the Indian Pines, Pavia University, and Salinas Valley datasets, respectively. The code of this work will be accessible at https: //github.com/irfan01000/MSTSENet.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Deep Convolutional Capsule Network for Hyperspectral Image Spectral and Spectral-Spatial Classification
    Zhu, Kaiqiang
    Chen, Yushi
    Ghamisi, Pedram
    Jia, Xiuping
    Benediktsson, Jon Atli
    REMOTE SENSING, 2019, 11 (03)
  • [22] Spectral-Spatial Attention Transformer with Dense Connection for Hyperspectral Image Classification
    Dang, Lanxue
    Weng, Libo
    Dong, Weichuan
    Li, Shenshen
    Hou, Yane
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [23] A Deep Network Based on Multiscale Spectral-Spatial Fusion for Hyperspectral Classification
    Li, Zhaokui
    Huang, Lin
    Zhang, Deyuan
    Liu, Cuiwei
    Wang, Yan
    Shi, Xiangbin
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, KSEM 2018, PT II, 2018, 11062 : 283 - 290
  • [24] Hyperspectral Image Classification Via Spectral-Spatial Random Patches Network
    Cheng, Chunbo
    Li, Hong
    Peng, Jiangtao
    Cui, Wenjing
    Zhang, Liming
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4753 - 4764
  • [25] Spectral-spatial classification of hyperspectral image using three-dimensional convolution network
    Liu, Bing
    Yu, Xuchu
    Zhang, Pengqiang
    Tan, Xiong
    Wang, Ruirui
    Zhi, Lu
    JOURNAL OF APPLIED REMOTE SENSING, 2018, 12
  • [26] Dilated Spectral-Spatial Gaussian Transformer Net for Hyperspectral Image Classification
    Zhang, Zhenbei
    Wang, Shuo
    Zhang, Weilin
    REMOTE SENSING, 2024, 16 (02)
  • [27] Cross Spectral-Spatial Convolutional Network for Hyperspectral Image Classification
    Houari, Youcef Moudjib
    Duan, Haibin
    Zhang, Baochang
    Maher, Ali
    2019 TENTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2019, : 221 - 225
  • [28] Multipath Residual Network for Spectral-Spatial Hyperspectral Image Classification
    Meng, Zhe
    Li, Lingling
    Tang, Xu
    Feng, Zhixi
    Jiao, Licheng
    Liang, Miaomiao
    REMOTE SENSING, 2019, 11 (16)
  • [29] SPECTRAL-SPATIAL FUSED ATTENTION NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Ningyang
    Wang, Zhaohui
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 3832 - 3836
  • [30] Multi-scale spectral-spatial dual-transformer network for hyperspectral image classification
    Pan, Zhaojie
    Ding, Sunjinyan
    Sun, Genyun
    Zhang, Aizhu
    Jia, Xiuping
    Fu, Hang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (07) : 2480 - 2494