MSTSENet: Multiscale Spectral-Spatial Transformer with Squeeze and Excitation network for hyperspectral image classification

被引:9
|
作者
Ahmad, Irfan [1 ]
Farooque, Ghulam [2 ]
Liu, Qichao [1 ]
Hadi, Fazal [1 ]
Xiao, Liang [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Univ Management & Technol, Dept Informat & Syst, Lahore, Pakistan
关键词
Hyperspectral image classification; Spectral-spatial feature; Squeeze and Excitation (SE); Deep learning; Transformer; Remote sensing; NEURAL-NETWORK;
D O I
10.1016/j.engappai.2024.108669
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image (HSI) classification pertains to the task of assigning a single label to each pixel by analyzing its spectral-spatial characteristics. Convolutional Neural Networks (CNNs) have garnered significant attention on account of their remarkable performance in feature representation. However, these approaches possess a restricted capacity to acquire highly similar spectral features. Recently, Attention -based approaches have been devised as a means to surmount the limitations inherent in CNNs. In this paper, we address a novel architecture for spectral-spatial feature extraction and HSI classification. The framework efficiently amalgamates the robustness and efficacy of three modern backbone networks, i.e., Multiscale CNN, Squeeze and Excitation (SE), and Transformer named MSTSENet. Initially, the multiscale convolution module integrates three branches of 3D convolution layers, each employing distinct kernel sizes, facilitating multiscale and multi -resolution feature extraction. Subsequently, the SE module enhances the inter -channel relationship by adaptively recalibrating the feature weight. The strategic fusion of the SE module with multiscale CNN strengthens deep feature extraction while introducing a minimal increment in overall parameters. Lastly, the Transformer module orchestrates information aggregation across different spectral-spatial regions, accurately modeling long-range contextual dependencies and capturing dominant feature representations. To evaluate the model performance, comprehensive experiments have been carried out on widely used benchmark HSI datasets. The overall accuracy of 98.74%, 99.83%, and 99.98% is achieved over the Indian Pines, Pavia University, and Salinas Valley datasets, respectively. The code of this work will be accessible at https: //github.com/irfan01000/MSTSENet.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] FuSENet: fused squeeze-and-excitation network for spectral-spatial hyperspectral image classification
    Roy, Swalpa Kumar
    Dubey, Shiv Ram
    Chatterjee, Subhrasankar
    Baran Chaudhuri, Bidyut
    IET IMAGE PROCESSING, 2020, 14 (08) : 1653 - 1661
  • [2] SPECTRAL-SPATIAL TRANSFORMER FOR HYPERSPECTRAL IMAGE SHARPENING
    Chen, Lihui
    Vivone, Gemine
    Qin, Jiayi
    Chanussot, Jocelyn
    Yang, Xiaomin
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1452 - 1455
  • [3] A multi-range spectral-spatial transformer for hyperspectral image classification
    Zhang, Lan
    Wang, Yang
    Yang, Linzi
    Chen, Jianfeng
    Liu, Zijie
    Wang, Jihong
    Bian, Lifeng
    Yang, Chen
    INFRARED PHYSICS & TECHNOLOGY, 2023, 135
  • [4] MULTISCALE SPECTRAL-SPATIAL UNIFIED NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Wu, Sifan
    Zhang, Junping
    Zhong, Chongxiao
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2706 - 2709
  • [5] MSTNet: A Multilevel Spectral-Spatial Transformer Network for Hyperspectral Image Classification
    Yu, Haoyang
    Xu, Zhen
    Zheng, Ke
    Hong, Danfeng
    Yang, Hao
    Song, Meiping
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Interactive Spectral-Spatial Transformer for Hyperspectral Image Classification
    Song, Liangliang
    Feng, Zhixi
    Yang, Shuyuan
    Zhang, Xinyu
    Jiao, Licheng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (09) : 8589 - 8601
  • [7] HYPERSPECTRAL IMAGE CLASSIFICATION BASED ON MULTI-LEVEL SPECTRAL-SPATIAL TRANSFORMER NETWORK
    Yang, Hao
    Yu, Haoyang
    Hong, Danfeng
    Xu, Zhen
    Wang, Yulei
    Song, Meiping
    2022 12TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING: EVOLUTION IN REMOTE SENSING (WHISPERS), 2022,
  • [8] Hyperspectral image classification based on multiscale piecewise spectral-spatial attention network
    Fan, Xinru
    Guo, Wenhui
    Wang, Xueqin
    Wang, Yanjiang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (11) : 3529 - 3549
  • [9] A Decompressed Spectral-Spatial Multiscale Semantic Feature Network for Hyperspectral Image Classification
    Liu, Dongxu
    Li, Qingqing
    Li, Meihui
    Zhang, Jianlin
    REMOTE SENSING, 2023, 15 (18)
  • [10] SSATNet: Spectral-spatial attention transformer for hyperspectral corn image classification
    Wang, Bin
    Chen, Gongchao
    Wen, Juan
    Li, Linfang
    Jin, Songlin
    Li, Yan
    Zhou, Ling
    Zhang, Weidong
    FRONTIERS IN PLANT SCIENCE, 2025, 15