Resource-Efficient Federated Learning and DAG Blockchain With Sharding in Digital-Twin-Driven Industrial IoT

被引:8
作者
Jiang, Li [1 ,2 ]
Liu, Yi [3 ,4 ]
Tian, Hui [5 ]
Tang, Lun [6 ,7 ]
Xie, Shengli [4 ,8 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Peoples R China
[2] Guangdong Univ Technol, Guangdong Prov Key Lab IoT Informat Technol, Guangzhou 510006, Peoples R China
[3] Guangdong Univ Technol, Guangdong Hong Kong Macao Joint Lab Smart Discret, Guangzhou 510006, Peoples R China
[4] Guangdong Univ Technol, Key Lab Intelligent Detect & Internet Mfg Things, Minist Educ, Guangzhou 510006, Peoples R China
[5] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[6] Chongqing Univ Posts & Telecommun, Sch Commun & Informat Engn, Chongqing 400065, Peoples R China
[7] Chongqing Univ Posts & Telecommun, Key Lab Mobile Commun, Chongqing 400065, Peoples R China
[8] Guangdong Univ Technol, Ctr Intelligent Batch Mfg Based IoT Technol 111, Guangzhou 510006, Peoples R China
来源
IEEE INTERNET OF THINGS JOURNAL | 2024年 / 11卷 / 10期
关键词
Digital twins; Blockchains; Industrial Internet of Things; Federated learning; Sharding; Adaptation models; Data models; Digital twin; directed acyclic graph (DAG) blockchain with sharding; federated learning; Industrial Internet of Things (IIoT); multiagent proximal policy optimization (MAPPO); resource scheduling; WIRELESS NETWORKS;
D O I
10.1109/JIOT.2024.3357827
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The development of Industry 4.0 relies on emerging technologies of digital twin, machine learning, blockchain, and Internet of Things (IoT) to build autonomous self-configuring systems that maximize manufactory efficiency, precision, and accuracy. In this article, we propose a new distributed and secure digital twin-driven IIoT framework that integrates federated learning and directed acyclic graph (DAG) blockchain with sharding. The proposed framework includes three planes: 1) the data plane; 2) the blockchain plane; and 3) the digital twin plane. Specifically, the data plane performs federated learning through a set of cluster heads to train models at network edges for twin model construction. The blockchain plane, which supports sharding, utilizes a hierarchical consensus scheme based on DAG blockchain to verify both local model updates and global model updates. The digital twin plane is responsible for constructing and maintaining twin model. Then, an efficient resource scheduling scheme is designed by considering performance of both federated learning and DAG blockchain with sharding. Accordingly, an optimization problem is formulated to maximize long-term utility of the digital twin-driven IIoT. To cope with mapping error in the digital twin plane, a multiagent proximal policy optimization (MAPPO) approach is developed to solve the optimization problem. Numerical results illustrate that comparing with traditional approach, the proposed MAPPO improves utility by about 37 %, and reduces time latency by about 14%. Moreover, it also can well adapt to the mapping error.
引用
收藏
页码:17113 / 17127
页数:15
相关论文
共 50 条
  • [21] Adaptive optimization federated learning enabled digital twins in industrial IoT
    Yang, Wei
    Yang, Yuan
    Xiang, Wei
    Yuan, Lei
    Yu, Kan
    Alonso, Alvaro Hernandez
    Urena Urena, Jesus
    Pang, Zhibo
    JOURNAL OF INDUSTRIAL INFORMATION INTEGRATION, 2024, 41
  • [22] Resource-Efficient Federated Learning for Network Intrusion Detection
    Doriguzzi-Corin, Roberto
    Cretti, Silvio
    Siracusa, Domenico
    2024 IEEE 10TH INTERNATIONAL CONFERENCE ON NETWORK SOFTWARIZATION, NETSOFT 2024, 2024, : 357 - 362
  • [23] Joining Federated Learning to Blockchain for Digital Forensics in IoT
    Almutairi, Wejdan
    Moulahi, Tarek
    COMPUTERS, 2023, 12 (08)
  • [24] Blockchain-Based Decentralized Federated Learning With On-Chain Model Aggregation and Incentive Mechanism for Industrial IoT
    Yang, Qing
    Xu, Wei
    Wang, Taotao
    Wang, Hao
    Wu, Xiaoxiao
    Cao, Bin
    Zhang, Shengli
    IEEE OPEN JOURNAL OF THE COMMUNICATIONS SOCIETY, 2024, 5 : 6420 - 6429
  • [25] Resource-Efficient Federated Learning with Hierarchical Aggregation in Edge Computing
    Wang, Zhiyuan
    Xu, Hongli
    Liu, Jianchun
    Huang, He
    Qiao, Chunming
    Zhao, Yangming
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS (IEEE INFOCOM 2021), 2021,
  • [26] FedTrip: A Resource-Efficient Federated Learning Method with Triplet Regularization
    Li, Xujing
    Liu, Min
    Sun, Sheng
    Wang, Yuwei
    Jiang, Hui
    Jiang, Xuefeng
    2023 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 2023, : 809 - 819
  • [27] Optimizing Federated Learning With Deep Reinforcement Learning for Digital Twin Empowered Industrial IoT
    Yang, Wei
    Xiang, Wei
    Yang, Yuan
    Cheng, Peng
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (02) : 1884 - 1893
  • [28] Blockchain-Based Federated Learning for Device Failure Detection in Industrial IoT
    Zhang, Weishan
    Lu, Qinghua
    Yu, Qiuyu
    Li, Zhaotong
    Liu, Yue
    Lo, Sin Kit
    Chen, Shiping
    Xu, Xiwei
    Zhu, Liming
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (07) : 5926 - 5937
  • [29] Toward Resource-Efficient Federated Learning in Mobile Edge Computing
    Yu, Rong
    Li, Peichun
    IEEE NETWORK, 2021, 35 (01): : 148 - 155
  • [30] Blockchain and Federated Learning Empowered Digital Twin for Effective Healthcare
    Joo, Yunsang
    Camacho, David
    Boi, Biagio
    Esposito, Christian
    Choi, Chang
    HUMAN-CENTRIC COMPUTING AND INFORMATION SCIENCES, 2024, 14