Heterogeneous hexagonal honeycombs with nature-inspired defect channels under in-plane crushing

被引:11
|
作者
Montazeri, Amin [1 ,2 ]
Saeedi, Amirhossein [1 ]
Bahmanpour, Ehsan [1 ]
Safarabadi, Majid [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Mech Engn, Tehran, Iran
[2] Boston Univ, Dept Mech Engn, Boston, MA 02215 USA
关键词
Biomimetic; Defects; Elastic properties; 3D printing; Structural;
D O I
10.1016/j.matlet.2024.136564
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Taking inspiration from geometric defects in hexagonal lattices existing in nature (beehive and graphene), this work explains how defects in the form of channels can improve the effective Young's modulus and specific energy absorption properties of hybrid-lattice hexagonal honeycombs under compression due to non -uniform collapse band behavior and strain delocalization. The results reveal that in terms of effective Young's modulus, honeycombs with octagon-pentagon and pentagon-trigon defected cells outperform the benchmark structure by roughly 13% and 20%, respectively. In terms of specific energy absorption (SEA), all compositelattice honeycombs show superior behavior to the benchmark honeycomb, especially the pentagon-trigon defective honeycomb with about 56.5% higher SEA. The novel structures show promising design prospects for applications in various industries, especially automotive and construction with cost-effective advantage in customized or low-volume production cases.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Enhanced out-of-plane crushing strength and energy absorption of in-plane graded honeycombs
    Tao, Yong
    Duan, Shengyu
    Wen, Weibin
    Pei, Yongmao
    Fang, Daining
    COMPOSITES PART B-ENGINEERING, 2017, 118 : 33 - 40
  • [32] The influence of cell micro-topology on the in-plane dynamic crushing of honeycombs
    Liu, Ying
    Zhang, Xin-Chun
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2009, 36 (01) : 98 - 109
  • [33] A refined model for the effective in-plane elastic moduli of hexagonal honeycombs
    Balawi, S.
    Abot, J. L.
    COMPOSITE STRUCTURES, 2008, 84 (02) : 147 - 158
  • [34] Fatigue of honeycombs under in-plane multiaxial loads
    Huang, JS
    Liu, SY
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2001, 308 (1-2): : 45 - 52
  • [35] Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression
    Li, Zhen
    Wang, Tao
    Jiang, Yi
    Wang, Liangmo
    Liu, Dan
    COMPOSITE STRUCTURES, 2018, 187 : 429 - 438
  • [36] In-plane crushing response and energy absorption of two different arranged circular honeycombs
    Zhang, Jun
    Shi, Boqiang
    Shen, Yanhua
    MATERIALS RESEARCH EXPRESS, 2023, 10 (09)
  • [37] In-plane crushing behaviour of hierarchical honeycombs: finite element simulation and analytical modelling
    Wang, Yuyang
    Zhang, Jianjun
    Lu, Guoxing
    Ha, Ngoc San
    Xiang, Xinmei
    Wang, Li
    ACTA MECHANICA SINICA, 2023, 39 (11)
  • [38] EXPERIMENTAL DAMAGE CHARACTERIZATION OF HEXAGONAL HONEYCOMBS SUBJECTED TO IN-PLANE SHEAR LOADING
    Joshi, Shraddha
    Ju, Jaehyung
    Berglind, Luke
    Rusly, Roy
    Summers, Joshua D.
    DesJardins, John D.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE 2010, VOL 1, PTS A AND B, 2010, : 35 - 41
  • [39] In-plane crushing behavior and energy absorption of CFRP honeycombs with different core topologies
    Pehlivan, Levent
    Baykasoglu, Cengiz
    THIN-WALLED STRUCTURES, 2024, 205
  • [40] Hyperelastic Constitutive Modeling of Hexagonal Honeycombs Subjected to In-Plane Shear Loading
    Ju, Jaehyung
    Summers, Joshua D.
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 2011, 133 (01):