Commercial carbonate based gel polymer electrolytes enable safe and stable high-voltage Li-metal batteries

被引:15
作者
Hao, Qingfei [1 ]
Ma, Xinyu [1 ]
Gao, Ying [1 ]
Chen, Fei [1 ]
Chen, Xiangtao [1 ]
Qi, Yang [1 ]
Li, Na [1 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat, Minist Educ, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Li metal batteries; In -situ polymerization; Gel polymer electrolyte; Stable interfaces; Noninflammability; LITHIUM ION BATTERIES;
D O I
10.1016/j.ensm.2024.103509
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The current lithium metal batteries (LMBs) are limited by their safety risks and poor cyclability owing to the lack of suitable electrolyte systems. Converting the conventional liquid electrolyte system to solid and quasi-solid states has thus become a critical concern for the advancement of LMBs. Herein, by using an in-situ polymerized poly(hexamethylene diisocyanate) (PHDI), we developed a non-flammable carbonate-based gel polymer electrolyte (GPE), which significantly inhibits the undesired reactivity of Li metal electrodes with the liquid electrolyte. The resulting GPE possesses high ionic conductivity (2 mS cm-1 at 25 degrees C), a wide electrochemical stability window (4.8 V). Utilizing such an electrolyte, Li symmetric batteries cycled stably for 1000 h, Li/ LiFePO4 batteries exhibit a significantly improved Coulombic efficiency of 99.6 % within 600 cycles. Furthermore, the PHDI-GPE can remain unignited after being exposed to fire in 5 s. Therefore, the novel in-situ polymerized PHDI-GPE reveals tremendous potential for high-performance rechargeable LMBs.
引用
收藏
页数:9
相关论文
共 50 条
[1]   Safe gel polymer electrolytes for high voltage Li-batteries [J].
Poiana, Ruggero ;
Lufrano, Ernestino ;
Tsurumaki, Akiko ;
Simari, Cataldo ;
Nicotera, Isabella ;
Navarra, Maria Assunta .
ELECTROCHIMICA ACTA, 2022, 401
[2]   Metal-ion-crosstalk-suppressing gel polymer electrolytes for high-voltage Li-ion batteries [J].
Jeong, Jihong ;
Kim, Daehyun ;
Kim, Mideum ;
Lee, Hosik ;
Lee, Jeongin ;
Cho, Yoon-Gyo ;
Lee, Jisu ;
Kwon, Yeong Gwang ;
Jung, Seo-Hyun ;
Lee, Myeong-Hee ;
Song, Hyun-Kon .
JOURNAL OF POWER SOURCES, 2025, 641
[3]   In-situ generation of fluorinated polycarbonate copolymer solid electrolytes for high-voltage Li-metal batteries [J].
Wang, Yong ;
Chen, Shaoshan ;
Li, Zeyu ;
Peng, Cong ;
Li, Yu ;
Feng, Wei .
ENERGY STORAGE MATERIALS, 2022, 45 :474-483
[4]   Construction of weakly solvating solid polymer electrolytes for high-voltage and stable lithium metal batteries [J].
Yang, Wenxi ;
Zhang, Ming ;
Wu, Jintian ;
Zhu, Jiajun ;
Li, Zhengwei ;
Xu, Ziqiang ;
Wang, Guoyu ;
Zhang, Tong ;
Fang, Zixuan ;
Wu, Mengqiang .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 694
[5]   Fluorine and carbonate regulated nonflammable polymer electrolyte for ultrastable high-voltage Li metal batteries [J].
Wang, Xuan ;
Pan, Daxi ;
Xu, Lisi ;
Mo, Daize ;
Xie, Haijiao ;
Meng, Yuezhong ;
Deng, Kuirong .
ENERGY STORAGE MATERIALS, 2025, 76
[6]   Highly safe and cyclable Li-metal batteries with vinylethylene carbonate electrolyte [J].
Zhang, Qiankui ;
Liu, Si ;
Lin, Zeheng ;
Wang, Kang ;
Chen, Min ;
Xu, Kang ;
Li, Weishan .
NANO ENERGY, 2020, 74
[7]   In Situ Formed Gel Polymer Electrolytes Enable Stable Solid Electrolyte Interface for High-Performance Lithium Metal Batteries [J].
Hao, Qingfei ;
Yan, Jiawei ;
Gao, Ying ;
Chen, Fei ;
Chen, Xiangtao ;
Qi, Yang ;
Li, Na .
ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (34) :44689-44696
[8]   Cationic Defect-Modulated Li-Ion Migration in High-Voltage Li-Metal Batteries [J].
Zhang, Yingmeng ;
Zhang, Jianhua ;
Ding, Zaohui ;
Zhang, Lixuan ;
Deng, Libo ;
Yao, Lei ;
Yang, Hui Ying .
ACS NANO, 2023, 17 (24) :25519-25531
[9]   Gel Polymer Electrolytes with High Thermal Stability for Safe Lithium Metal Batteries [J].
Chen, Xianhui ;
Wang, Xue ;
Li, Xing ;
Xin, Xing .
COLLOIDS AND INTERFACES, 2025, 9 (03)
[10]   Exploring high-voltage fluorinated carbonate electrolytes for LiNiMnO cathode in Li-ion batteries [J].
Xi Zheng ;
Ying Liao ;
Zhongru Zhang ;
Jianping Zhu ;
Fucheng Ren ;
Huajin He ;
Yuxuan Xiang ;
Yezhen Zheng ;
YYang .
Journal of Energy Chemistry , 2020, (03) :62-70