Trajectory Tracking Control of an Autonomous Vessel in the Presence of Unknown Dynamics and Disturbances

被引:4
作者
Aguilar-Ibanez, Carlos [1 ]
Suarez-Castanon, Miguel S. [2 ]
Garcia-Canseco, Eloisa [3 ]
Rubio, Jose de Jesus [4 ]
Barron-Fernandez, Ricardo [1 ]
Martinez, Juan Carlos [5 ]
机构
[1] Inst Politecn Nacl, Ctr Invest Comp, Mexico City 07738, Mexico
[2] Inst Politecn Nacl, Escuela Super Computo, Mexico City 07738, Mexico
[3] Univ Autonoma Baja Calif, Fac Ciencias Marinas, Ensenada 22860, Mexico
[4] Inst Politecn Nacl, Escuela Super Ingn Mecan & Electr Unidad Azcapotza, Mexico City 02550, Mexico
[5] Inst Politecn Nacl, Ctr Invest, Dept Control Automat & Estudios Avanzados, Mexico City 07360, Mexico
关键词
nonlinear system; slide mode control; vessel system; robust control; PID control; SURFACE VESSELS; REJECTION CONTROL; SHIPS; STABILIZATION; NAVIGATION; ROBOTS; MODEL;
D O I
10.3390/math12142239
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a proportional-integral-derivative-based controller plus an adaptive slide surface to solve the trajectory tracking control problem for a fully actuated vessel with unknown parameters perturbed by slowly varying external unknown dynamics. The controller design assumes that the vessel moves at low speed and frequency, its physical parameters are unknown, and its state is measurable. The control approach ensures error tracking convergence toward a small vicinity at the origin. We conduct the corresponding stability analysis using the Lyapunov theory and saturation functions. We tested the controller through two numerical experiments-a turning ellipse maneuver and a rest-to-rest maneuver-where the vessel parameters were unknown, and we obtained satisfactory results.
引用
收藏
页数:17
相关论文
共 37 条
[21]  
Reyes-Báez R, 2019, 2019 18TH EUROPEAN CONTROL CONFERENCE (ECC), P1636, DOI [10.23919/ECC.2019.8796246, 10.23919/ecc.2019.8796246]
[22]  
Ríos H, 2010, P AMER CONTR CONF, P4427
[23]   MEMS-based Inertial Navigation on Dynamically Positioned Ships: Dead Reckoning [J].
Rogne, Robert H. ;
Bryne, Torleiv H. ;
Fossen, Thor I. ;
Johansen, Tor A. .
IFAC PAPERSONLINE, 2016, 49 (23) :139-146
[24]   On adaptive sliding mode control without a priori bounded uncertainty [J].
Roy, Spandan ;
Baldi, Simone ;
Fridman, Leonid M. .
AUTOMATICA, 2020, 111
[25]   MLP neural network-based recursive sliding mode dynamic surface control for trajectory tracking of fully actuated surface vessel subject to unknown dynamics and input saturation [J].
Shen, Zhipeng ;
Bi, Yannan ;
Wang, Yu ;
Guo, Chen .
NEUROCOMPUTING, 2020, 377 :103-112
[26]   Dynamic second-order sliding mode control of the hovercraft vessel [J].
Sira-Ramírez, H .
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2002, 10 (06) :860-865
[27]   Linear Observer-Based Active Disturbance Rejection Control of the Omnidirectional Mobile Robot [J].
Sira-Ramirez, H. ;
Lopez-Uribe, C. ;
Velasco-Villa, M. .
ASIAN JOURNAL OF CONTROL, 2013, 15 (01) :51-63
[28]  
Sira-Ramirez H., 2004, DIFFERENTIALLY FLAT, Vfirst, DOI [10.1201/9781482276640, DOI 10.1201/9781482276640]
[29]  
Sira-Ramrez H., 2018, Active disturbance rejection control of dynamic systems: a flatness based approach
[30]   Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory [J].
Skjetne, R ;
Fossen, TI ;
Kokotovic, PV .
AUTOMATICA, 2005, 41 (02) :289-298