Entropy production from maximum entropy principle: A unifying approach

被引:1
作者
Varizi, Adalberto D. [1 ]
Correia, Pedro S. [1 ]
机构
[1] Univ Estadual Santa Cruz, Dept Ciencias Exatas & Tecnol, BR-45662900 Ilheus, BA, Brazil
关键词
QUANTUM COHERENCE;
D O I
10.1103/PhysRevE.110.024109
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Entropy production is the crucial quantity characterizing irreversible phenomena and the second law of thermodynamics. Yet, a ubiquitous definition eludes consensus. Given that entropy production arises from incomplete access to information, in this work we use Jaynes' maximum entropy principle to establish a framework that brings together prominent and apparently conflicting definitions. More generally, our definition of entropy production addresses any tomographically incomplete quantum measurement and/or the action of a quantum channel on a system.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Thermodynamic Uncertainty Relation for Biomolecular Processes [J].
Barato, Andre C. ;
Seifert, Udo .
PHYSICAL REVIEW LETTERS, 2015, 114 (15)
[2]   Quantifying Coherence [J].
Baumgratz, T. ;
Cramer, M. ;
Plenio, M. B. .
PHYSICAL REVIEW LETTERS, 2014, 113 (14)
[3]   LOGICAL REVERSIBILITY OF COMPUTATION [J].
BENNETT, CH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1973, 17 (06) :525-532
[4]   The second laws of quantum thermodynamics [J].
Brandao, Fernando ;
Horodecki, Michal ;
Ng, Nelly ;
Oppenheim, Jonathan ;
Wehner, Stephanie .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2015, 112 (11) :3275-3279
[5]   Thermodynamics of Micro- and Nano-Systems Driven by Periodic Temperature Variations [J].
Brandner, Kay ;
Saito, Keiji ;
Seifert, Udo .
PHYSICAL REVIEW X, 2015, 5 (03)
[6]  
Breuer H.-P., 2007, The Theory of Open Quantum Systems
[7]   Quantum jumps and entropy production [J].
Breuer, HP .
PHYSICAL REVIEW A, 2003, 68 (03) :7
[8]   Observational entropy, coarse-grained states, and the Petz recovery map: information-theoretic properties and bounds [J].
Buscemi, Francesco ;
Schindler, Joseph ;
Safranek, Dominik .
NEW JOURNAL OF PHYSICS, 2023, 25 (05)
[9]   Reconstruction of quantum states of spin systems: From quantum Bayesian inference to quantum tomography [J].
Buzek, V ;
Derka, R ;
Adam, G ;
Knight, PL .
ANNALS OF PHYSICS, 1998, 266 (02) :454-496
[10]   Colloquium: Quantum fluctuation relations: Foundations and applications [J].
Campisi, Michele ;
Haenggi, Peter ;
Talkner, Peter .
REVIEWS OF MODERN PHYSICS, 2011, 83 (03) :771-791