A Training Sample Size Estimation for the Bayes Classifier

被引:0
|
作者
Salazar, Addisson [1 ]
Vergara, Luis [1 ]
Gonzalez, Alberto [1 ]
机构
[1] Univ Politecn Valencia, Inst Telecommun & Multimedia Applicat, Valencia, Spain
来源
2023 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE, CSCI 2023 | 2023年
关键词
Training sample size; learning curve; classification; parameter learning; sample size; probability of error; PATTERN-RECOGNITION; ERROR; PERFORMANCE;
D O I
10.1109/CSCI62032.2023.00049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a theoretical training sample size estimation for the Bayes classifier based on the estimation of a learning curve for the class-conditional probability density. A statistic proportional to the posterior probability of the true class is defined. This allows the convergence of the statistic to be dependent only on the training sample size and the feature vector dimension. Thus, the estimated learning curve is general and independent of the model parameters and can be used to estimate the error probability for a given training sample size. Several simulations are included for multivariate Gaussian distributions demonstrating the fitting of the curve to estimate the reduction of error by increasing the training sample size.
引用
收藏
页码:277 / 283
页数:7
相关论文
共 50 条
  • [1] Improvement of the Parzen classifier in small training sample size situations
    Muto, Yoshihiko
    Hamamoto, Yoshihiko
    Intelligent Data Analysis, 2001, 5 (06) : 477 - 490
  • [2] A Finite Sample Analysis of the Naive Bayes Classifier
    Berend, Daniel
    Kontorovich, Aryeh
    JOURNAL OF MACHINE LEARNING RESEARCH, 2015, 16 : 1519 - 1545
  • [3] Evaluation of the modified Parzen classifier in small training sample size situations
    Muto, Y
    Nagase, H
    Hamamoto, Y
    SOFT COMPUTING IN INDUSTRIAL APPLICATIONS, 2000, : 615 - 624
  • [4] Training Normal Bayes Classifier on Distributed Data
    Kholod, I. I.
    Kuprianov, M. S.
    Titkov, E. V.
    Shorov, A. V.
    Postnikov, E. V.
    Mironenko, I. G.
    Sokolov, S. S.
    PROCEEDINGS OF THE 13TH INTERNATIONAL SYMPOSIUM INTELLIGENT SYSTEMS 2018 (INTELS'18), 2019, 150 : 389 - 396
  • [5] Sample Size Estimation in Cluster Randomized Educational Trials: An Empirical Bayes Approach
    Rotondi, Michael A.
    Donner, Allan
    JOURNAL OF EDUCATIONAL AND BEHAVIORAL STATISTICS, 2009, 34 (02) : 229 - 237
  • [6] BAYES ESTIMATION OF THE SIZE OF A FINITE POPULATION - CAPTURE RECAPTURE SEQUENTIAL SAMPLE DATA
    LEITE, JG
    PEREIRA, CAD
    INTERNATIONAL STATISTICAL REVIEW, 1990, 58 (03) : 201 - 213
  • [7] BAYES DOUBLE SAMPLE ESTIMATION PROCEDURES
    COHEN, A
    SACKROWITZ, HB
    ANNALS OF STATISTICS, 1984, 12 (03): : 1035 - 1049
  • [8] Bayes error rate estimation using classifier ensembles
    Tumer, Kagan
    Ghosh, Joydeep
    International Journal of Smart Engineering System Design, 2003, 5 (02): : 95 - 109
  • [9] Object Position Estimation Using Naive Bayes Classifier Algorithm
    Malik, Reza Firsandaya
    Pratama, Eko
    Ubaya, Huda
    Zulfahmi, Rido
    Stiawan, Deris
    Exaudi, Kemahyanto
    2018 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (ICECOS), 2018, : 39 - 43
  • [10] ESTIMATION OF SAMPLE SIZE
    JOHNSON, NL
    TECHNOMETRICS, 1962, 4 (01) : 59 - &