Chaos and bursting patterns in two-neuron Hopfield neural network and analog implementation

被引:12
作者
Li, Fangyuan [1 ,2 ]
Chen, Zhuguan [3 ]
Bao, Han [3 ]
Bai, Lianfa [1 ]
Bao, Bocheng [3 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
[2] Nanjing Vocat Coll Informat Technol, Sch Elect Informat, Nanjing 210023, Peoples R China
[3] Changzhou Univ, Sch Microelect & Control Engn, Changzhou 213159, Peoples R China
基金
中国国家自然科学基金;
关键词
Hopfield neural network; Stimulation; Bifurcation; Equilibrium point; Quasi-periodic bursting; Periodic bursting; NUMERICAL-ANALYSES; MODEL; DYNAMICS;
D O I
10.1016/j.chaos.2024.115046
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
To demonstrate and elucidate bursting patterns and their bifurcation mechanisms, a two-neuron Hopfield neural network is proposed in this paper. The proposed non-autonomous model has a time-varying equilibrium point whose stability undergoes continuous evolution in response to changes in stimulation, and exhibits chaotic dynamics, especially the quasi-periodic and periodic bursting patterns. Over a full bursting cycle, the stability evolution of the time-varying equilibrium point triggers Hopf bifurcation and fold bifurcation, leading to the emergence of quasi-periodic or periodic bursting. To elucidate the bifurcation mechanisms, the transitions between the spiking state and the resting state are demonstrated, thereby identifying the Hopf/Hopf quasi-periodic bursting and fold/fold/Hopf periodic bursting. In addition, a simple analog electronic circuit is designed for the physical implementation of the non-autonomous model, and a printed-circuit board based hardware circuit is made to test the experimental results to verify the numerical results.
引用
收藏
页数:13
相关论文
共 65 条
[41]   Collective dynamics of two coupled Hopfield inertial neurons with different activation functions: theoretical study and microcontroller implementation [J].
Madasamy, Ettappan ;
Boya, Bertrand Frederick Boui a ;
Kengne, Jacques ;
Rajagopal, Karthikeyan .
PHYSICA SCRIPTA, 2023, 98 (09)
[42]   Hopfield neural network: The hyperbolic tangent and the piecewise-linear activation functions [J].
Mathias, Amanda C. ;
Rech, Paulo C. .
NEURAL NETWORKS, 2012, 34 :42-45
[43]   Dynamical Effects of Electromagnetic Flux on Chialvo Neuron Map: Nodal and Network Behaviors [J].
Muni, Sishu Shankar ;
Fatoyinbo, Hammed Olawale ;
Ghosh, Indranil .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (09)
[44]   Complex dynamics of a heterogeneous network of Hindmarsh-Rose neurons [J].
Njitacke, Zeric Tabekoueng ;
Muni, Sishu Shankar ;
Seth, Soumyajit ;
Awrejcewicz, Jan ;
Kengne, Jacques .
PHYSICA SCRIPTA, 2023, 98 (04)
[45]   Energy computation, infinitely coexisting patterns and their control from a Hindmarsh-Rose neuron with memristive autapse: Circuit implementation [J].
Njitacke, Zeric Tabekoueng ;
Fozin, Theophile Fonzin ;
Muni, Sishu Shankar ;
Awrejcewicz, Jan ;
Kengne, Jacques .
AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2022, 155
[46]   Chimera in a network of memristor-based Hopfield neural network [J].
Parastesh, Fatemeh ;
Jafari, Sajad ;
Azarnoush, Hamed ;
Hatef, Boshra ;
Namazi, Hamidreza ;
Dudkowski, Dawid .
EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2019, 228 (10) :2023-2033
[47]   Activity driven modeling of time varying networks [J].
Perra, N. ;
Goncalves, B. ;
Pastor-Satorras, R. ;
Vespignani, A. .
SCIENTIFIC REPORTS, 2012, 2
[48]   Remerging Feigenbaum Trees, Coexisting Behaviors and Bursting Oscillations in a Novel 3D Generalized Hopfield Neural Network [J].
Tabekoueng Njitacke, Z. ;
Laura Matze, C. ;
Fouodji Tsotsop, M. ;
Kengne, J. .
NEURAL PROCESSING LETTERS, 2020, 52 (01) :267-289
[49]   Coexistence of infinitely many patterns and their control in heterogeneous coupled neurons through a multistable memristive synapse [J].
Tabekoueng, Zeric Njitacke ;
Muni, Sishu Shankar ;
Fozin, Theophile Fonzin ;
Leutcho, Gervais Dolvis ;
Awrejcewicz, Jan .
CHAOS, 2022, 32 (05)
[50]   Experimental Quantum Stochastic Walks Simulating Associative Memory of Hopfield Neural Networks [J].
Tang, Hao ;
Feng, Zhen ;
Wang, Ying-Han ;
Lai, Peng-Cheng ;
Wang, Chao-Yue ;
Ye, Zhuo-Yang ;
Wang, Cheng-Kai ;
Shi, Zi-Yu ;
Wang, Tian-Yu ;
Chen, Yuan ;
Gao, Jun ;
Jin, Xian-Min .
PHYSICAL REVIEW APPLIED, 2019, 11 (02)