High-Detectivity and Broadband MoS2 Phototransistor Array by Coupling Negative Capacitance and Local Surface Plasmon Resonance Effects

被引:4
作者
Jiang, Weichao [1 ]
Deng, Yuheng [2 ]
Su, Rui [1 ]
Xu, Jingping [1 ]
Liu, Lu [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Integrated Circuits, Wuhan 430074, Peoples R China
[2] Univ Hong Kong, Dept Elect & Elect Engn, Hong Kong 999077, Peoples R China
基金
中国国家自然科学基金;
关键词
phototransistor; MoS2; AuNPs; negative capacitance; local surface plasmon resonance; LAYER MOS2; PHOTODETECTOR; MONOLAYER; PHOTORESPONSE; ENHANCEMENT; ABSORPTION; WS2;
D O I
10.1021/acsphotonics.4c00183
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This work introduces a groundbreaking MoS2 phototransistor with exceptional detectivity and broad-spectrum response, achieved through the synergy of an HZO ferroelectric film and in situ-prepared Au nanoparticles (AuNPs). In situ prepared AuNPs enhance the ferroelectricity of the HZO film. The innovative approach involves inserting an Al2O3 layer between AuNPs/MoS2. The Al2O3 layer reduces the off-state current, preserving the local surface plasmon resonance (LSPR) effect of AuNPs. The tensile strain induced by AuNPs in MoS2 narrows its bandgap for broadband photodetection. Also, Al2O3 acts as a capacitance-matching layer, reducing subthreshold swing and enhancing detectivity through the negative capacitance (NC) effect of the ferroelectric HZO film. The NC-LSPR-coupled phototransistor demonstrates outstanding responsivity and detectivity at 528 nm (122.5 A/W, 3.23 x 10(14) Jones) and 740 nm (28.3 A/W, 9.14 x 10(13) Jones). This pioneering integration of NC and LSPR effects in 2D photodetectors paves the way for large-area phototransistor arrays with superior detection and broadband detection capabilities.
引用
收藏
页码:2308 / 2315
页数:8
相关论文
共 42 条
[1]   Extraordinary Sunlight Absorption and One Nanometer Thick Photovoltaics Using Two-Dimensional Monolayer Materials [J].
Bernardi, Marco ;
Palummo, Maurizia ;
Grossman, Jeffrey C. .
NANO LETTERS, 2013, 13 (08) :3664-3670
[2]   Ferroelectricity in hafnium oxide thin films [J].
Boescke, T. S. ;
Mueller, J. ;
Braeuhaus, D. ;
Schroeder, U. ;
Boettger, U. .
APPLIED PHYSICS LETTERS, 2011, 99 (10)
[3]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[4]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[5]   Preparation of High-Performance Phototransistors Combining Negative-Capacitance Effect of Gate Dielectric With WS2/MoS2 Heterojunction Channel [J].
Chen, Shangde ;
Liu, Lu ;
Xu, Jingping .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (09) :4921-4927
[6]  
Chhowalla M, 2013, NAT CHEM, V5, P263, DOI [10.1038/nchem.1589, 10.1038/NCHEM.1589]
[7]   High-Detectivity Multilayer MoS2 Phototransistors with Spectral Response from Ultraviolet to Infrared [J].
Choi, Woong ;
Cho, Mi Yeon ;
Konar, Aniruddha ;
Lee, Jong Hak ;
Cha, Gi-Beom ;
Hong, Soon Cheol ;
Kim, Sangsig ;
Kim, Jeongyong ;
Jena, Debdeep ;
Joo, Jinsoo ;
Kim, Sunkook .
ADVANCED MATERIALS, 2012, 24 (43) :5832-5836
[8]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[9]  
Furchi MM, 2014, NANO LETT, V14, P6165, DOI [10.1021/nl502339q, 10.1021/n1502339q]
[10]   Ferroelectricity Enhancement in Hf0.5Zr0.5O2 Based Tri-Layer Capacitors at Low-Temperature (350 °C) Annealing Process [J].
Gaddam, Venkateswarlu ;
Das, Dipjyoti ;
Jung, Taeseung ;
Jeon, Sanghun .
IEEE ELECTRON DEVICE LETTERS, 2021, 42 (06) :812-815